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AFIT/GA/AA/88D-06
o Abstract

An analytical study is conducted to determine the
® fundamental frequencies and critical buckling loads for
laminated anisotropic circular cylindrical shell panels,

including the effects of transverse shear deformation and rotary

inertia, by using the Galerkin technique. A linearized form of
Sander’s shell strain-displacement relations are derived, which
include a parabolic distribution of transverse shear strains.
The theory is valid for leminate thickness to radius ratios,
h/R, of up to 1/5. Higher order constitutive relations are
derived for the laminate. A set of five coupled partial
differential equations of motion and boundary conditions are
derived and then solved using the Galerkin technique. Simply
supported and clamped boundary conditions are investigated.

The Galerkin method is tested for convergence to exact
solutions. Comparisons with Donnell shell solutions are
conducted. The effects of <transverse shear deformation and
rotary inertia are examined by comparing the results with

classical solutions, where applicable. The radius of curvature

is varied to determine the effects of membrane and bending
coupling. ‘ !#

It is found that the Galerkin technique converges for all
panel configurations investigated; additionally, it is found
that buckling problems need more terms in the approximations %

than vibration problems to obtain proper convergence. The theory

ix




compares exactly with the Donnell solutions, which are valid wup
to h/R = 1/50. As expected, as length to thickness ratios are
reduced, shear deformation effects significantly 1lower the
natural frequencies and buckling loads. Analysis also shows
that rotary inertia effects are very small. Finally, as h/R is
varied from O (flat plate) tc 1/5 (maximum 1limit), the
frequencies and buckling loads increase due to membrane and

bending coupling.




VIBRATION AND BUCKLING CHARACTERISTICS OF COMPOSITE
» CYLINDRICAL PANELS INCORPORATING THE EFFECTS
OF A HIGHER ORDER SHEAR THEORY

I. INTRODUCTION

Advanced composite materials, so named due to their high
strength and stiffness to weight ratios, are seeing widespread
use in many diverse industries. One of these is the aerospace
industry, where complex shell configurations are common
structural elements. Structural elements consisting of
composite materials offer unigque advantages over those made of
traditional isotropic materials in that properties can be
tailored to meet specific design goals. Optimization of
properties through tailoring can reduce the overall weight of a
structure, since stiffness and strength are designed only where
they are required. A lower weight structure translates into
higher performance. (8)

Because of the potentially 1large spatial variations of
stiffness properties in these composite shell structures due to

tailoring, three dimensional stress and strain effects become

very important. Whereas classical two dimensional assumptions
may be valid for an identical shell structure consisting of

isotropic materials, they may lead to gross inaccuracies for an *




orthotropic construction. (8)

To ensure a structurally strong and stable product, the
designer needs to know the buckling and vibration
characteristics of the structural elements, along with other
important properties. Cylindrical shell panels are a common
shell configuration in aerospace structural applications and are
one of the few shell elemznts that may be analyzed analytically,
rather than resorting to a finite element numerical approach.

In light of the above, this thesis focuses on the
fundamental natural frequencies of vibration and the critical
buckling loads of composite circular c¢ylindrical shell panels
including the following:

1. Linear displacement and rotations, and 1linear elastic
behavior of cylindrical shells and flat plates.

2. Parabolic transverse shear strain and stress modeling.

3 Bifurcation buckling analysis.

4. Harmonic vibration analysis excluding transients.

5

Analytical solution method using the Galerkin technique.
BACKGROUND

There have been many contributors to the research of this
thesis. This section will briefly address previous work related
to this research in an approximate order of what occurred
historically. |

Past research has clearly indicated the need to refine the




classical Kirchhoff-Love shell theories to better predict the
stability and dynamic responses of composite cylindrical shell
configurations. The Kirchhoff-Love theory assumes normals to
the shell mid surface before deformation remain normal after
deformation, effectively neglecting transverse shear strains.
These classical theories predict shell panels that are too
stiff, resulting in high frequencies and buckling loads. L.H.
Donnell apprlied the Kirchhoff-Love theory to shallow cylindrical
shell panels.

The need to include transverse shear effects was first
recognized by Reissner (18), followed by Mindlin (12) who
included rotary inertia effects in the dynamic analysis of
plates. The Reissner-Mindlin theory assumes the cross section
remains plane, but is allowed to rotate from the normal with
respect to the mid surface after deformation. Extra independenf
degrees of freedom are included, which enables the transverse
shear to be fully described by the shell mid surface degrees of
freedom and the thickness coordinate. This first order theory
does not satisfy the boundary conditions of =zero transverse
shear on the top and bottom surfaces of the laminate because of
the constant shear angle assumed. The introduction of a
correction factor helps to alleviate this problem.

Reddy (15), (17) and Soldatos (21) have recently applied a
so called parabolic through the thickness shear strain
distribution to analyze laminated anisotropic plates and shells.

The in-plane displacements are cubic functions of the thickness

.
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coordinate, satisfying zero transverse shear strain boundary
conditions on the top and bottom surfaces of the laminate. The
same independent degrees of freedom as used in Reissner-Mindlin
theory are used here, but the need for a correction factor is
eliminated.

It is this higher order transverse shear theory upon which

the strain-displacement relations for this thesis are based.

OBJECTIVES

There are four main objectives to this thesis. First is
the development of a higher order set of linear strain
displacement relations for the cylindrical panel that
incorporate parabolic transverse shear. The relations could be
regarded as a linearized form of Sanders equations, applicable
to deep panels (almost complete cylinders). The theory is not
limited to shallow panels as is Donnell theory. (1) The strain
displacement relations result in higher order constitutive
relations for the panel. The second objective is the analytical
solution for the fundamental frequencies and critical buckling
loads of the cylindrical panel for different geometries and
boundary conditions. Third, the method will be used to analyze
the effects of shear deformation, rotary inertia, and radius of
curvature. Intrinsic in this analysis is the determination of
the maximum thickness to radius ratio allowed under the

conditions of assuming 2zero transverse normal stress. And




fourthly, verification of the results by comparison with other

approximate methods and classical methods, where applicable.

APPROACH

A logical approach is taken to complete this thesis. The
displacement field for the anisotropic circular cylindrical
panel, that is a function of the mid surface degrees of freedom,
is developed based upon Reddy’s (15), (16) ,(17) and Soldatos’
(21) parabolic transverse shear strain model. Linear orthogonal
curvilinear coordinates from Saada (19) are used to derive the
strain displacement relations. These relations include higher
order terms, applicable to the analysis of deep panels. Basic
principles from Jones (9) are used to develop the higher order
constitutive relations for the laminate. The kinetic energy,
strain energy, and potential energy are each separately derived
using principles from (11), (20), (5), and (7). Hamilton’s
principle is applied to extract the equations of motion and
boundary conditions, which are then solved using the Galerkin
technique.

To solve the equations, the degrees of freedom are
approximated by admissible functions: those that satisfy
geometric boundary conditions. The Galerkin equations are
generated with the aid of MACSYMA (25) by substituting the
admissible functions into the equations of motion and boundary

conditions. A Fortran program is written which formulates the




eigenvalue problem from the Galerkin equations. The program
yields the desired natural frequencies and/or buckling loads and
their corresponding eigenvectors for a particular input
geometry, ply layup, and boundary condition. Simply supported
and clamped boundaries are analyzed.

Results are compared with other approximate solutions and
classical solutions, where available. Also, to ensure valid
results, the Galerkin technique is tested for convergence, and

transverse normal stress effects are analyzed.




II. THEORETICAL DEVELOPMENT

The first step in the theoretical development for this
thesis is the derivation of the displacement field based upon a
through the thickness parabolic transverse shear strain
distribution of the laminate. The LINEAR orthogonal curvilinear
coordinate strain-displacement relations will then be derived.
Next, anisotropic thick cylindrical shell panel theory will be
discussed. From there, the kinetic energy, strain energy, and
potential energy due to external forces will be derived and used
in Hamilton’s principle to formulate the equations of motion and
boundary conditions for the panel. Finally, Galerkin’s
technique will be applied to approximate the differential
equations of motion and boundary conditions. Galerkin’s
technique will be used for two different boundary conditions:

all sides simply supported and all sides clamped.
STRAIN-DISPLACEMENT RELATIONS

The coordinate system for the circular cylindrical shell
panel and the degrees of freedom to be used in the theory are
shown in Figure 2.1. The x and y axes are located at the mid
surface of the laminazcte (2 = 0). The degrees of freedom
uo(x,y,t), vo(x,y,t), and w(x,y,t) are the laminate mid surface
displacements in the x, y, and z directions, respectively. The
degrees of freedom wx(x,y,t) and wy(x,y,t) are the rotations of

the laminate cross section from the normal at the mid surface




with respect to the x and y axes, respectively. R is the radius

of curvature, h the laminate thickness, a the length in the x

direction, and b the length in the y direction.

Figure 2.1 Shell panel coordinates and degrees of freedom

In order to determine the displacement field, the

transverse shear strains, rxz and ryz' need to be modeled. In




classical laminated shell theory, through the thickness shear
deformation is neglected according to the Kirchhoff Love
hypothesis that plane cross sections remain plane and
perpendicular to the laminate mid surface after deformation. A
displacement field that is a first order function of =z is
required in classical shell theory. Bowlus (3),(4) and Palardy
(13) in their flat plate work modeled trensverse shear strain
using Mindlin plate theory, which also required the use of a
first order displacement field. Mindlin plate theory assumes
the cross section remains plane, but is allowed to rotate from
the normal with respect to the mid surface after deformation.
The assumption of no cross sectional warping introduce; error,
especially at the top and bottom surfaces of the laminate, since
the model does not match the boundary conditions of zero
transverse shear strain there. This error is reduced by the
introduction of & shear correction factor. This thesis models
transverse shear strain parabolically wherein the strains are
maximum at the laminate mid surface and are zero at the top and
bottom surfaces, satisfying the boundary conditions. Figure 2.2
illustrates the transverse shear concepts discussed above.

To achieve the desired parabolic transverse shear, a higher
order displacement field is required, as apposed to the first
order displacement field used in the Classical and Mindlin
cases. The coordinate displacements in the x and y directions,
u and v, will be cubic functions of z; the displacement in the
z direction, w, will be constant with respect to z. From Reddy

(16) and Saada (19), the generalized displacement field is:




_ 2 3
u(x,y,z,t) = u, +zv, +z ¢1 + 2 61
vix,y,z,t) = [1 + —E—]v + 2y 4+ zz¢ + 236
I R o) y 2 2
wix,y,t) = w (2.1)

where ¢1, ¢2, 91, and 62 will be chosen to satisfy the boundary

conditions of zero transverse shear strain at the laminate top

BEFORE DEFORMATION

Z Plane Cross Section

/

e

» X

AFTER DEFORMATION

No Deformation
O0f Cross Section

Kirchhoff

Mindlin

Parabolic

7
7
7

Figure 2.2 Transverse Shear Strain Models
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and bottom surfaces.
Linear orthogonal curvilinear coordinates are used to
develop the strain-displacement relations. (14),(19) For a

circular cylindrical shell panel these relations reduce to:

x X
- 1 w
v T, = vy + &)
R
b4 = 1 u, + v,
Xy 1 + Z_ y X
R
- 1 . A
Yy 1 4+ -2 [w’y R] M
R
rxz =W, + Y x

(2.2)
where ( ),x represents partial differentiation with respect to x
and so on. <, is assumed equal to zero. This implies that a
change in length in the normal (2) direction of a cross section
perpendicular to the mid surface is not considered, and is
regarded as an accepted inconsistency in plate and shell theory.
In reality, <, is not zero, but is small compared to the other
strains. For the laminate, it means there are discontinuities

in €, at the lamina boundaries, but they too are small.

The Donnell cylindrical shell panel equations assume -2 0

R
in Eq (2.2). As shown in Eq (2.33a) later in this chapter, this
assumption limits Donnell theory to be valid only for small —%—

ratios. With no transverse shear, the maximum h/R 1limit under
Donnell assumptions is approximately 1/500. (23) As will be
shown, with transverse shear included, the Donnell equations are

valid up to h/R equal to approximately 1/50. (16)
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For simplicity this thesis assumes —%— =2 0 for the
transverse shear strains, 7yz and Y o only. {The 1limitations

of the model resulting from these simplifications are discussed

in Appendix A.) For the membrane strains cx, £ and rxy’ the

y)
following polynomial expansion is made:

1
TR

This approximation allows the strain-displacement relations to
be valid for deep panels, with an —%— maximum limit of
approximately 1/5. (See Dennis (8) and Appendix A.) The

transverse shear strains in Eq (2.2) become:

= v, +wW,, -
Yva = Vig 'y R
Yxz = Yy + ¥ x
If one sets ryz(x,y,th/z,t) = 0 and sz(X.y.ih/Z,t) = 0 to

satisfy the laminate surface boundary conditions, then from Egq

(2.1) it can be shown that (see Appendix A):

= ¢2 =0
e1 = k(wx + w,x) . 62 = k(wy + w,y)
where k = - 3:2 . The displacement field then becomes:
u(x,y,2,t) = u, +ozv, 4 zsk(wx + w,x)
vix,y¥,2,t) = [1 + —;—]vo +ev, 4 z3k(wy + W)
wix,y,2,t) = w (2.3)

Using this displacement field in Eq (2.2), the

12




strain-displacement relations become

3
= + + +
€x uo.x zwx.x 2 k(wx.x w'xx)
w 2 3
€ =V + —= + - — +
vy - Voy* R ty,y TR ZTV¥,ytzk

-—Rl-—z"‘k(wx, +w,_ )

y Xy
Y =y + W, + 3kzz(w + w, )
ya 4 h 4 Yy Yy
' —y, + W + 3kz2(w + w )
X2 X ’x x 'x

Shorthand notation can be introduced

strains as follows:

(2.4)

to rewrite the

r r r r r r
£ 1 e ° ) x © ] 9] ] ] 2 ) 0 ]
X X x x
& & o ® ° ® 1 »® 2 ® s
b 4 Yy Yy Yy b4 y
- o ° 2 1 3 2 4 ]
1 yxy P = o y’q F  + 24 nxy y 4+ 24 nxy b + 24 n*y t + 24 ”xy b
o) 1
ryz ?’yz 0 uyz o) 0
o Py
0 ] 0 0
nrxzj Lyxz J L y L %Z ) L J \ J (2. 5)
(Note the superscripts on the » terms are pnot exponents. They

are for identification purposes only and

13
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among the high and low order curvature terms.)

the laminate mid surface are:

£
x Yo, x
o w
& v > —_—
y o,y R
o -
1 ny b= Yo,y o,x |
o
+ W
Yyz Yy 'y
r g ° V. + W
. X2 P . x g P

The

strains at

(2.6)

and the curvature terms (x) due to bending and shear deformation

are defined as follows:

r " e 1 r
x wx,x
° -
) x°} = Wy’y
x ° ty + w + (v - u )
[ Txy X,y Y, X 2R 0, X o,y
F 1) 1 w
*y "R Y.y
x 1 -— Tl Y
4 xy = 4 xY s
41
* . k(v + W, )
| uxz’ LSk(wx + w, )
r 9 r
axz k(wx,x + W, )
z —
1% 1 = Hc(wy’y + w,yy)
2
[ ®xy k(¥y,y * Yy, x * 2V yg)
r s “ r- 1 '
| | - TRyt
x ° - k(v + W )
[ Txy " R X,y ' Xy
14

(2.7)




ANISOTROPIC THICK CYLINDRICAL SHELL PANEL THEORY

Lamination theory incorporates constitutive relationships
for an orthotropic lamina through the shell panel thickness
resulting in expressions which approximate force resultants in
terms of displacement functions. This theory provides concepts
which are required in the subsequent development of the
equations of motion and boundary conditions. The constitutive
relationships are developed for the basic building block, the
lamina, to the end result, the structural laminate. The end
results of this section are the laminate stiffness terms and
force resultants.

The plane stress constitutive relationships for a single
orthotropic layer in the principle coordinate system shown in

Figure 2.3 are

P«

7

L

/..
—
x

N

Figure 2.3 Lamina Material Coordinates
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N N
[SE——

(2.8)
Note that az = 0 for plane stress. That 1is, the individual
laminae are considered to be thin enough that the average value

of o, Aacross the thickness is negligible. The S are

ij
compliance terms and may be written in terms of the lamina

engineering constants as:

S11 * '%;

S12 = - 221

Sg2 = '%;

See ~ Giz

S44 Géa

Sg5 = G:3 (2.9)
where Ei are Young’s moduli in the ith direction, vij is

Poisson’s ratio for transverse strain in the jth direction when
stressed in the ith direction, and Gij is the shear modulus in
the i-j plane.

Equation (2.8) may be inverted to give the relationship of

the stresses in terms of the strains:

16




ax Q11 Q12 0 cx
e 1= | Y2 Ry O cy

Txz | 0 Qs Y xz (2.10)

where Qij are the reduced stiffness terms and are defined as:

E
Q. = 1
i1 1 - v12v21
Q. = 1282 __ 2By
12 © 1 - vy 1 - vig¥ny
Q. = F2
22 1 -vyiovy
Qs = G2
Qq = Gp3
Qg = Ggy (2.11)

A structural laminate consists of N laminae oriented at
different angles with respect to each other. The previous
constitutive relations apply only to Figure 2.3 where the
lamina-fixed 1-2 axis system is aligned with the laminate (or
global) x-y axis system. If the 1-2 axis system is not aligned
with the x-y axis system but rather is at an angle € (see Figure

2.4), the reduced stiffness matrix, [Qij]’ must be transformed.

17




s
X e‘/
S

Figure 2.4 Arbitrary Lamina Coordinates

The transformation matrices applied to the stiffness terms in Eq

(2.10) to reflect the shift in the laminae axes are defined

below:
Qy; 9 O 2 g -2cs
! 0 0 Q66 cs -cs cz- 32
[ Q 0 c -s
For 44 , T =
L 0 Q55 8 (o] 1
where ¢ = cos{(f) and s = sin(9). _J$

The transformed reduced stiffness matrices then become:

[aia']z[T][QiJ-][T]T i

18




From (9), the lamina constitutive relationships <can now be

expressed in laminate coordinates as:

“x (9, “x
vt = | Q2 Qp “y
“xv) ] QU g Qg « Uxy
{ Tyz} _ [ Qua 545] { Yye }
Txz) i Us s o LT xz (2.12)
where k denotes the kth lamina and the individual aij are

computed as:

q,, = Q,,cos% + 2(q, + 2Q,,)sin®0cose + Q,,sin'e
Q,, = (Q,, + Q,, - 4Q..)sin%6cos%6 + Q.. (sine + cosle)

12 11 22 66 12
Q,, = Q,,sin%e + 2(Q,, + 2Q..)sin6cos%e + Q,.coste

22 11 12 66 22
= _ _ ) . 3 _ . 3
le = (Q11 le 2Q66)s1necos 6 + (le Q22 + 2Q66)s1n 6cosé
= _ } ) . 3 ) . 3
st = (Q11 le 2Q66)s1n 6cosé + (Q12 sz + 2Q66)s1n9cos e
666 = (Q11 + sz - 2Q12 -2Q66)sin2900s26 + Qes(sin49 + cos4e)
544 = Q44cos26 + stsinze
545 = (Q,4 - Q4y)cosOsing
555 = Q5500s29 + Q44sin26 (2.13)

Finally, substituting the expressions for the strains in Eq
(2.5) into the constitutive relations in Eq (2.12), the stress

in the kth lamina of the structural laminate is expressed as:

19
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|

“x Q; 9 9 L x, 0
_ - — — o o 2 1

v = | Q2 Qg Qg €y + 2y, ML ¥
- - 0 o 1
")y Qe Qp °eek ¥y ey ey

x 2 0

®

+ 234 2 + g ®

Y Y

»® 2 ® i

xy xy

- -— 1

Tyz _ Q44 Q45 yyz 2 “vz
T B Q Q 2 BRI E
X2 K 45 55 X X2z Xz - (2.14)

The resultant forces and moments and the higher order
resultant quantities acting on the laminate are obtained by
integrating the stresses in each lamina through the laminate
thickness. Thus, for the laminate with N laminae shown in

Figure 2.5

20
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N [Layer Number
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Figure 2.5 Geometry of an N layered laminate

the resultant forces and moments and higher order quantities

are:
1 11 (51 1 1 [ % ]
N2 . o 82 , P2 s L2 4 ay (1,2,2%,2%,2 ")dz
-h/2
Ne|l (Ml 86l Pe]l |L6 |
r
N 2 °'x ]
= 2: I k 4 oy g (1,2,22,23,24)dz
k=1~ %k-1] .
L wu k
Q 2 h/2 [7y, 2 N Ty 2
s = I (1,2")dz = I (1,27 )d=z
Q1 Rl ~h/2 Txz k=1 Zp-1{"xz X
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where {Ni} and {Qi} are the resultant forces, {Mi} are the
? resultant moments, and {Si}' {Pi}, {Li}, and {Ri} are the higher
order quantities resulting from the higher order
strain-displacement relations.

» ~ By substituting Eaq (2.14) into Eq (2.15), thereby
expressing the stresses in terms of the mid surface displacement

quantities and the transformed reduced stiffness matrices, the

integration is simplified because the mid surface values are
independent of z and can come out of the integral and summation
signs. (9) This allows the following notation to be adopted for
the integrated laminate stiffness matrices:

(Aijp Bij; Dijp Ei.j’ Fij; Gij) Hij; I.

Qy 9y Q4

= 2
Q12 Q22 QZG k (1,2,22,23,24,25,26.27,28)dz

™=
{ {
| ol

= z
1 [ %6 %26 9%, X!
i,j =1,2,6
For the transverse shear:
N = =
Q Q z
(A.., D.., F..) = E: 4 745 k (1,22, 2%)dz
1) 1) 1] 6 6
k=1 45 55 Kk k-1
i,J = 4,5
(2.18)

Now Eq (2.15) may be written as:
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ml’ [~ ] ’c o
o
o | [ A [ =] [ o] [ =s] [ 7] ley°
N o
(6. r
wd
mlﬂ r o )
ux
tep | L] Do [md [md [ ffue g
M6 lx, ..
(51) 6 )
Pep = | [ o] [ [ mal [ed [om] ffor i
S 1
L 6, U xy
P r 2 )
1 "
oy | omdd [ma] [e] [ [ ondlffet
LPGJ xyz
1) 0 )
8
tef | [rd D] [ [ [ o] 1o
L x ®
(6. L -l L %y J
i’j = 1,2,6
r - B 3 - OW
(2] | %44 A5 Paa Das | J7ye |
o
Q1) _ | %45 A5 D45 Do | |"xe |
r ) - r ‘1
{F2l | Paa DPas Faq Fys W"yz |
1
F1) [ Pas Dss Fas  Fop | ("2 |
(2.17)

where the large matrix above is (15 x 15) and each of

its submatrices are the (3 x 3) matrices in Eq (2.16).
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A

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The displacement field, strain displacement relations, and
the laminate resultant quantities in Eq (2.17) will now be used
in the energy formulation to find the equations of motion and
boundary conditions.

The fundamental equation used in this development 1is

Hamilton’s Principle:

t
IZ [6T-60—6V]dt=0
Y (2.18)

where

T = kinetic energy

U = strain energy

V = potential energy due to external forces, and é is the
first variation. This section will be devoted to the derivation
of the kinetic energy, strain energy, and potential energy, and
finally to the appli&ation of Hamilton’s principle. The result
will be five coupled partial differential equations of motion
plus their associated boundary conditions.

The kinetic energy for the structure is defined as

b ra h/2 ; ; )
T = I I I —%—p[ u2 + v2 + wz ]dzdxdy
6 N )

b2 (2.19)

where p is the mass density (11), (20).

Taking the partial time derivatives of the midplane
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displacements and squaring,

W2 = 0%+ (22 + 2keDup, + 2kedu w4+ (2 + 2kat 4 1%Byy 2
+ ket + 26y, k%0, 2
QZ = [1 + 2—%—]002 +[1 + —%—](22 + Zkza)Qon+ 2[1 + ~%—]kzaQ°Q,y
+ (z2 + 2kz4 + kzzs)#y2 + (2kz4 + ZRZZG)QyQ,y + kzzs\'v,y2
W= (2.20)
By substituting Eq (2.20) into Eq (2.19) and making the

the following is obtained:

following definitions for the mass moments of inertia:

h/2
(11912:13114,15317) = I p(l

Eq (2.

~h/2
=1, + 51,

= 1, + kI,

=1, + 15 + kI + 51,
= —kI4
= kI, - 51,

= I + 2kI, + K°I,

= -kI, - k°I,

19) becomes:
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-3
]
Nf =

b ra -2 - - . - . . = - 2 _ ..
I I [Iluo + 212u°wx - 213uow,x + I4wx - 215wxw,x
0 0
2. . 2 -9 - . . - . .
+ k I7w,x + I1 Vs + 212 vowy - 213 vow,y

2 2 2

— . — . - . - 2
+ T2 - 2Tgw + KoL B 1w ]dxdy (2.22)

Taking the first variation and collecting terms gives

the following result:

6T

b ra . _ . _ . . _ . _ . _ . .
J j [(Iluo + Izwx - Isw,x)éuo + (Izu° + I4wx - Isw,x)éwx
(0 I ¢)

+ (—Iauo— Iswx + k

I7w,x)6w,x + (I1 v + 1

2 - . .
o 2 ¥y ~ I3 w’y)évo

-_ B _ . - . —_ 2
+ (12 v, + I4wy - Ibw,y)éw + (—I3 Vo Iswy + k

. .
v I7w,y) w,

y

+ 11a6§]dxdy (2.23)

The following steps are taken to obtain the final form of
the variation in kinetic energy: (1) Integrate Eq (2.23) by
parts with respect to x and y (for this procedure, see Appendix
B) for the terms GQ,X and 6Q,y; (2) Integrate the complete
resulting expression by parts with respect to time; (3)
Collect terms; (4) Neglect the variations of the degrees of
freedom at the endpoints t, and t,; and (5) Neglect time
dependant boundaries, since only harmonic problems are

considered. The following is obtained:
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2 . . - . — -
K21 G + Woyy) + Tgwy o 4 Ilwléw - [Izuo + Ty, -

"l

Isw,xléwx - [12 v, * Iqu - Isw,y]éwy }dxdydt (2.24)

The strain energy is developed following the procedures
outlined in (11), (14) and (20). The first variation of the

strain energy may be written:

b ra h/2

&y = I I I (a S + o0 6 + T O + T 6y +

X X y v Xy Xy Yz " yz
0 0 -h/2

szérxz] dzdxdy
(2.25)

By substituting the strain-displacement relations in Eq (2.5)
into Eq (2.25), integrating with respect to 2, and using the
resultant quantities in Eq (2.15), the first variation of strain

energdy may be rewritten as:
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2 “y S "y

b ra
- o o 2 o
80U = I J. [Nlécx + Mlénx + Plénx + Nzésy + M 2
0 0

2 s o 1 2
+ Pzény + Lzény + Nséyxy + M éxxy + P

Sx ° 4 S
Xy Yy

S
x

6 6 6

- ] (o] 1 o 1
+ Lsé“xy + Qzéyyz + Rzézeyz + Qlérxz + R16“xz ]dxdy

(2.26)
Substituting the expressions for the mid surface strains and
curvatures in Eqs (2.6) and (2.7) into Eq (2.26) and then
collecting terms, the following is obtained for the strain

energy:

_ rb a
S0 = {Nléuo,x + [NS - ﬁ—MG]éuo,y + Nzévo,y + TNZGW +
0O O

1
[2k1>6 - k—R—Ls]éw,n, + (@, + 3KR,)Ew,  + (@ + 3KR,)6w,  +

+ kPl)éwx, + (Q1 + ale)éwx + (Q2 + 3kR2)6wy +

X

1 1
[MZ - —R—Sz + sz - —R—'kLz]éw + (MG + sz)évl +

Y,y Yy, X

1 1
[Me - —5-Sg + KPg - —ﬁ-—kLG]éwx’y xdy (2.27)
Eq (2.27) is integrated by parts according to Appendix B to

obtain:
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b ra
- _ _ 1 _ ) _
+ su 'I I{ [ Ny x ~Ng,y * 2R Me,y]é“'o + [ No vy ~ Ng, &
0O 0

1
‘ih‘“e,xlévo + [k(Pl,xx * P vyt P ) Ty T 9 i -

1

SK(Ry y, + By ) + (N, - K(L, _ + Le’xy)]]éw + [3kR1 -
1
L k(Pl,x + PS,y) - Ml,x - M6,y +Q + 3 (Ss,y + kL6,y)]6wx +
1
[3kR2 - K(Py  + Py ) - My 4k (5, + kL, ) -

Mﬁ,x + Qzléwy }dxdydt

b

1

* I { Njsug + (Ng + —pMg)ev, + [Py, + 2Pg, ) + @) +
0

xX=a
dy
x=0

1
3kR1 + _ﬁ_kLs,y]éw + (M1 + 2kP1)6wx + (M6 + sz)éwy }

a
1
+ I { [NG - _ﬁ—MS]éuo + N26Vo + [-R(Pz,y + 2P6,x) + Q2 +

0
1 1
3KR, + —4k(L,  + Ls'x)]éw + [MS + KPg + —2—(-Sg -kLS)]éwx
1 y=
+ [Mz + 2kP2 + —ﬁ—(—S2 - 2kL2)]6wy } _ dx
y=0
1 y=b Ix=a
+ k[2P6 - --R—Ls]éw
y=0 |x=0 (2.28)

The last component of the energy formulation to consider is
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the potential energy due to external forces. The only external
forces considered are inplane forces that will bifurcate the
laminate in buckling: ie, those forces that will create
out-of-plane displacement. In-plane inextensibility is assumed
in the bifurcation analysis. Therefore, only nonlinear bending
strains need to be considered. The linear and nonlinear bending

portions of the membrane strains at the laminate mid surface are

from Saada (19):

_ 1 2
€x T 7 Yy

_ W 1 2
‘y =5 *+ —§—w,y
Y,w = W.xw,y

The expression for the potential energy then becomes:

vV = Jb Ia{ ﬁl—%—w,xz + ﬁz[—%— + —%—w,yz] + ﬁsw,xw,y }dxdy

o o (2.29)

where ﬁl and ﬁz are externally applied loads per length in the x
and y directions, respectively, and ﬁs is the externally applied
inplane shear load per length. (See (5) and (7).) This thesis
will only be concerned with axial buckling in the x direction,
but will develop a general formulation. Taking the first

variation and collecting terms:

b ra
6V = I I { (le,x + ﬁsw,y)éw,x + (ﬁzw,y + ﬁsw,x)éw,y
O O

+ —%—ﬁzéw }dxdy
(2.30)

After intedrating by parts and collecting terms, the final form
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b
of the potential energy becomes:
b
b car _ - _
= J I {-le,xx - 2Wgw,  + NZ[——— -y }6wdxdy
0O 0
P Ib - _ =a a _ _ y=b
+ (N,w,_ + N_.w,_ )bw dy + I (N,w,_  + N.w,_ )ow dx
o 1 X Y x=0 2%y 8T X T y=0  (2.31)

The expressions for the first variations of kinetic,

strain, and potential energy in Eas (2.24), (2.28), and (2.31)

are used in Hamilton’s principle, Eq (2.18), to obtain:

GV 1
It I I {L'Iluo = Twe t Igw Ny v Ngy _fﬁ—MS,yléuo

y y ¥ Y2,y T Ve,x 2R 6, x

+ i-TSUO,x - T5wx,x - T[-S'i"o,y + KT (w, + w’yy) -
Tsiy,y - Lw - K(Py o + Py oy + 2Pg 1) + @y o #
Q , + 3K(Ry , + Ry ) - LN, - kL, o+ Lg I
ﬁl"’xx + Zﬁsw,xy - ﬁz[—%— - w,yy] ]6w

+ [—Tzﬁo ~ T4¢x + TSG,X + k(P L+ Pg )+ My L+ Mg o -
3kR, - Q; - ‘%“Ss,y + kLe,y)]éwx

+ [—T2'§° - T4$y + T5§,y + k(Py 4 Pg ) + My 4 Mg =
KR, - @y - F(S, , + kLz'y)]éwy } dxdydt
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— e

t, b
2 1

. It I { Nysug + (Ng + —gpg)ove + [k(Py o + 2Pg ) + @ +
1%

1 -~ =
KR, + kg o+ Nyw,, + Nsw,yléw + (My + 2kP))6y,_ +
X=a
(M. + kP.)by } dydt
6 6 y x=0

t a
2 1
_ It I { (M6 - SmMe)ous + Npov, + [-xp, , + 2Pg ) + @, 4
170

1 - -
3kR2 + —ﬁ_k(Lz,y + LS,x) + Nzw,y + N6w’x]6w +

1
(MS + sz + —1—2—(—86 -kLs)]éwx +
1 y=b
[M2 + 2kP, + (-5, - 2kL2)]6wy } . dxdt
I 2{ 1 y=b |x=a
- k[ZP -1y ]6w} dt = 0
e, 6 - R Lls =0 |x=0 (2.32)

The double integral over the domain in Eq (2.32) contains the
five equations of motion. The two line integrals are the
geometric and natural boundary conditions along the four edges
of the shell panel, and the last term expresses the boundary
conditions at the four corners. In the double integral, the
variations of the degrees of freedom (6u°. 6vo, 6w, 6wx, and
éwy) are arbitrary and in general are not equal to zero.
Consequently, their corresponding coefficients must equal =zero,
yielding the five coupled partial differential equations of

motion for the panel at any time, t:
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Nix * Ng,y = 2 Mg,y = iig + T Tav. »

év

No,vy * Ng,x * _%ﬁ_uﬁ,x = Tl'vo * TZ‘Vy - T3'w'y

Sw

- k(Pl’xx + Pz,yy + 2P 6, xy) + Q2 v + Q1 <t 3k(R2 Rl,x) -

'%’[Nz K(Ly oo + Lg o )1 + Nyw, o+ 2w, - N, —%— - "’yy]
= Tghg st Tg¥ o + Ty Vo o~ KoL W )+ T o+ T W
Sy

k(Pl,x + Ps,y) + M1,x + MS,y - 3kRy - Q _%_(86 y * kLG,Y)

= Ipuy + T4;'x - T5;”x

6wy:

K(Py o + Pg o) + My o + Mg~ 3kRy - Q) - —4~(S, _ + kL, )

=T, vy + Tey - Tgw (2.33)

These equations of motion will simplify to those of other
authors for certain applications. If R +» o in Egqs (2.21),
(2.32), and (2.33), the equations of motion and boundary
conditions reduce to those of a flat plate with parabolic
transverse shear and rotary inertia. (See (14), (15), and
(17).) 1If the following terms are deleted from the equations of

motion in Eq (2.33):
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Suyt - or M,y
Sy —l——M
o 58 M6, x
S Lxw +L. )
: R 2,yy 6, xy
, 1
5Wx- - R (SS.Y + kLs’y)
A S

the equations of motion reduce to the Donnell equations of
motion as presented by Reddy (16). For h/R = 1/50, the terms in
Eq (2.33a) are small relative to the other terms in Eq (2.33),
thus establishing the 1/50 limit used by Reddy.

The general equations developed so far need to be tailored
to meet the needs of the specific circular cylindrical shell
panel to be considered in this thesis. First of all, this
thesis will only consider symmetric laminates: that is,
laminates that are symmetric about the mid surface with respect
to both material properties sand geometry (fiber orientation
angle, ek’ and thickness, tk). Therqfore, the following

stiffness matrices from Eqs (2.16) and (2.17) will drop out (9):

‘ [ Bij] = [ Eij] = [ Gij] = [ Iij] = [ 0 ] (2.33b)
Additionally, since p is constant with respect to z (all laminae

have the same density), the inertia terms in Eq (2.21) may be

integrated to yield:
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1 1
3 5 7 (2.33¢c)
1, = phv/12, 1. = ph /680, 1., = ph'/448
3 5 7
= _ 1 .3 © _ 1 .3 = _ 3 < _ 3
I, = —F°h"/15, Ta = ~h"/60, T, = 170h"/315, T, = 4ph”/315

The last simplification concerns the acceleration terms in Egqs

(2.32) and (2.33). This thesis will consider rotary inertia:

not in-plane inertia. Consequently, the following in-plane
acceleration terms will drop out: U, = v, = uo,x = vo,y = 0.
During the development of the kinetic enerdy, time

dependant boundaries were ignored because this thesis is
concerned exclusively with harmonic problems. Assuming harmonic
solution forms and applying separation of variables, <the five
degrees of freedom and their corresponding accelerations may be

expressed as:

u, = uo(x,y,t) = uo(x,y)s1nwt
v, = vo(x,y,t) = vo(x,y)s1nmt

- - . o 2 . - 2

w =wix,y,t) = w(x,y)sinwt , w = -w"w(x,y)sinwt = -ww

- _ . 8 : -

Ve = vx(x,y,t) = wx(x.y)smwt, Ve = @ Vx(X,y)81nwt = W
. 3 2 . 2

v, = wy(x,y,t) = Vy(x.y)smwt, v, = wy(x,y)smwt = Wy,
where w is the natural frequency of vibration. (2.334)

If these expressions are substituted into Hamilton’s principle,
Eq (2.32), bearing in mind that all the resultant quantities

({N;}, {M;}, {8;}, {P;}, {L;}, {Q;}, and {R;}) are functions of
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the spatial derivatives of u , v, w, ¥

may be factored out from the entire expression and

o]

with respect to time:

ty

The integrand may be ce <celed to the right

equation,

The concepts

t
J zsinwtdt = - —%—coswt

ty

Y

presented

incorporated into Hamilton’s

partitioned into five equations.

motion plus the associated boundary condition for

degree of freedom.

(4), (21),

o x’

in these

Principle.

and (23).

Equation (2.32) for u, yields:

Equation

and wy, the term sinwt

(2.33e)

side of the

leaving Eq (2.32) independent of time.

paragraphs are now

(2.32) is

Each contains the equation of

a particular

b A
1
. I [Nl,x *Ng y - '§§“Ms,y]6“odXdy +
0 0
rb x=0 a 1 y=0
N,bu dy + I [N - Y ]6u dx = 0
J 1ol .. 6 2R "6) Tof _y (2.34)
0 0
Equation (2.32) for Vo yvields:
° a[f " w? -I ‘02w + N + N + —l——M ]év dxdy +
2 wy 3 'y 2,y 6,x 2R "6, x o y
0O O
b 1 x=0 a y=0
I [Ne + 'Eﬁ'“s]évo _ dy + I Nzévo _bdx =0 (2.35)
) x=a ) y=
36
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Equation (2.32) for w yields:

® bl wz(w + )y - k21 w2(w +w, ) + 1
5 X, X wy.y 7 ?xx 'Yy 1
0 O

k(Pl,xx + Pz,yy + 2P6,xy) + Qz’y + 3k(R
1 = —
‘ﬁ‘[Nz - k(Lz,yy + L6,xy)] + le’xx + 2N
Nli - 6w dxdy +
2R , y

a
1
I (kP + 2Pg ) + @y + 3KR, + (L, o+ Lg )

o

+ Nz"’y + New,

y=0 }|x=0

1
k[zps - Tleaw} |
y=b [x=a
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W w + Ql,x -
2,y ¥ Rl,x) -
6V xy ~
_ x=0
+ Nsw,y]Gw _ dy +
x=a
— ] y=0
Sw dx +
X, v=b
{(2.36)
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Equation (2.32) for ¥y yields:

b
=+ 2 5 2
I Ia[14w Ve ~ 15w Vit k(Pl,x + PS,y) + Ml,x + MS,y - Q1 -
o o

1
3kR) - (Sg,y * ]‘d‘S.y)]‘swxd’“’ly +

x=0
dy +
x=a

y=0
dx = O
y=b

ra
1
[Ms + KPg + —-(-S, -kLS)]éwx
0

(2.37)

o

And, finally Eq (2.32) for wy yields:

b ra,. 2 - 2
0O 0

1
KR, - (S, + kLz’y)]éwydxdy +

Pb[ x=0

M. + kP ]6w dy +
J, 6 6 X x=a
~a[ 2kP 1 KL ¥=0

M, + + —§(-5, - 2KL,)]éy dx = 0
Jo 2 AR 2') Y] y=p (2.38)

The final step in the development of the equations of
motion and boundary conditions is to substitute the resultant
quantities in Eq (2.17) and the strain-displacement relations in
Eqs (2.6) and (2.7) into Eqs (2.34) through (2.38). With the
aid of MACSYMA (25) to perform the extensive algebraic
manipulations, these five equations may be expressed in terms of

the degrees of freedom and stiffness terms.
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Equation (2.34) for u, becones:

b ea
I I {A66uo,yy + Alluo,xx + 2A16uo,xy + A26vo,yy + A16vo,xx +
0 O

1( 3
(Agg * A19)Vg oy * ‘ﬁ‘[‘ 7 KFggW, ouy + BgWsy + Agow, -
3 KF, W “k(2F.. + F..)w - 3 (KkF.. + D..)v -
5 KFy6%s sy 66 ¥ F12)Woxyy — 7 (KFgg + Dgglv, oy
3 (xF,. + D, v - 2 (xF,. + D, v A 3 S
5 (KFyg * DigWWy, xy = 7 (KFpg * Dyglvy oy 7 KFgg

&

1 11
12 * 3 Dgs* DP12)¥%, xy™ R 7 D6’ Vo, xy” “o,yy)]}‘suod"dy

b
1
+ J {Alluo,x + A16uo,y + A12vo,y + A16vo,x * R [—kFIZV’yy -
0

x=0
dy

kFlsw‘xy+ Ajow —(KkF, 4+ Dlz)wy,y-(kF16+ Dls)wx’y]}éuo ea

a
1 (3
* J {Alsuo,x * Bggio,y * ArgVo,y * AseVo,x * (" 2 KFaeWyy
0

1 3
7 KFyg¥s gy = 2KFggWsyy * BggW = 5 (KFpg + Dyglv, o -
3 (KF. o+ Dop)w. - S (KFant Do )¥. - 2 (KF, .+ D,.)w
7 (KFgg* Dggl¥y, = 3 (KFge+ Dgolvy o= 3 (KFig+ Digdv, o
1 1 y=0
- & % Des Vo x - uo,y)]}éuo y=bdx = 0 (2.39)
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Equation (2.35) for Vo becomes:

b
=’ 2 =’ 2
I r{Iz w wy - 13 w w,y + Alﬁuo,xx + (ASS + A12)uo,xy+ A26uo,yy
0 0

1
+ A + AgeVo xx * 28 + ———[—kF

26Y0,xy ¥ R + A

22V, vy 22¥ yyy" f22%y

3 xr

kFyg¥ssux = 2

26% xyy * B2 x = (KFgg + Doglvy oy

+

= N

1
(kF1g + Dygd¥y sx = 7 (KFgg + Dggl¥y yy ~(KFos

1 1
Dool¥y vy + 5 (KFgg + Dggl¥y o = 3 (KFog *+ Dogd¥y v

D66(uo,xy - vo,xx)]}évodXdy

o L)

1
R

b
1 1
+ Io{élsuo,x + A66uo,y + AggVo,x t A26vo,y * =R [- 2 kFZSW’yy +
1
2

13

1
kF + A, W -~ 5 (kF66 + D

16" xx * A26 (kFig +

66 ¥x,y * 16

3L TSN

1 1
16"%x,x~ 2 (KFag * Dagl¥y, o + 5 (KFgg + Dggl¥y o -

1 1 x=0
R 4 D66(uo,y - vo,x)]}évo xzady

a
1
* I {A12“o,x + Aagly y * AagVox * AoaVoy * TR {KFagyy -
0

kF + A

26¥ xy * B22¥ - (KFpg+ Dogl¥y v ~

(2.40)
(KFoot Dzz’wy,y]}évo
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Equation (2.36) for w becomes:

° e T wz( + ) -~ kzl wz(w + w y + 1 wzw + N.w +
5 wx,x wy,y 7 ’xx ‘yy 1 17 xx
0 O

= = 2
ZNsw,xy + Nzw’yy -k szw,

2

+ (6kD44 + 9k F44 + A44)w,yy

2

2 2
-k Hllw, - 4k Hlew, - 2k (ZH66 + le)w, +

2 2

- 4k°H 2

(6kD55 + 9k” + A55)w'xx 06" + (12kD45 + 18k F45

2 2
+ 2A45)W.xy - (k st + szs)V + (6kD45 + 9k F45 +

XYYy

2 2
A45)wx,y - (k H11 + kFll)wx, - (3k"H

XXX 16 + 3kF

16)wx,xxy -

+ (Ssz + 9k2F +

k(2kH6 + kH + 2F 5 55

6 12 66 * F12)%, xyy

2

1\55)wx,x - k(kH22 + Fzz)wy + (6kD + 9k F4

»YYY 44 4* A44)Vy.y

-k(kH16 + F - k(2kH + kH + 2F

16y, soex 66 12 66 * F12)% sxy

2

—k(SkH26 + 3F26)w + (SkD45 + 9k F4 +

1 -
‘R—['"z* 3

Y, Xyy 5 * Agpl¥y o

w

3
kF26uo,yyy - A26uo,y 3 kFlsuo,xxy - A12uo,x

+ k(2Fgg + Fioduy vy ¥ ¥ooVe yuy = B2oVo v ~ BogVo x

+ % KF

1 1 2
2 kFlsvo,xxx 26Vo, xyyt "R [_k J22w’yyyy+ 2kF22w’yy

2

—k2J - 2k%yg + 2KF - Byow ~k(kJyg +

66w’xxyy 26w’xyyy 26w’xy 22 6

+ (kF,. + D - k(kJ,. + H

st)wx.yyy 26 Zs)wx,y 66 Se)wx,xyy -

k(kdy, + Hpolv, + (kFpy + Dyplvy, -

yYyy
k(kJyg + st’wy,xyy]]}édedy
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2
+ 9k F45 + A

45

b
= = 2

45)w’y -

2

- 4k°H 2

2
k“H 16w’xxy + (6kD55 + gk F55 + A55)w,x -

2k(kH26+

11Y’ 30x

2
k™ (4H + H yy—k(kH16 + F

66 * H12)V¥ryuy™ Fogl¥y, 16 ¥y, xx

2
+ 9k F45 +

- 3k(kH1

- k(2kH6 + kH + 2F

6 12 66 * F12)V¥y xy * (6KD g

Ags)¥y — Zk(kHgg + Foo)y - k(kH), + Fy )y 6

X, Yy X, XX

2

1
*F16)¥x, xy * (BKDgy + SKTFpg + Agglv, + g [Zszeuo,yy *

3
2

2

1 1
kF * KV vy T 3 K Ve, e t ‘ﬁ‘[‘k Joe"! yyy

16Y%, xy

2

+ szew,y -k J66w’xyy - k(kJ66 + HGG)wx,yy

x=0
- k(kJ26 + st)wy,yy]]}éw

dy
X=a

a
- = 2 2

+ I {Nzw,y + Nsw,x -k szw, + (6kD44 + 8k F44 + A44)w,y -

0

2

2k2H g

2
-k (4H66 + le)w, - 4k™H + (8kD +

16Y 30ex 26w’xyy 45

2

9k"F - k(kH26 + F 2k(kH16 + F

a5 * Bg5)¥oy 26" ¥x, yy~ 16"¥x, xx

+ (BKD,._+ 9K°F

~k(2kH 45 ast Bas)¥x

+ kle + 2F

66 66 * F12¥, xy

-k(kH,, + F —2k(kH66 + F -3k(kH

22 * Foal¥y oy 66'%y, xx 26*F26 )%y, xy

2 1 3
+(6kDgy + FKFyy + Agylvy, + ‘E‘[kF1s“o,xx g Mg, yy *

3
k(ZF66 + F12)uo,xy + szzvo,yy + 3 kF

1
260, xy* ‘E‘[szzw'y

2

2

~x2J -2k2J + kF - k(kJ.. +

66w’xxy 26w’xyy 26Y" x 26

Hyg)¥ “kikdgg + Hgelvy o “K(kdgy + Hyplvy oo-k(kdyg +

X, Yy Xy
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—v

y=0
dx
y=b

H26)wy,xy]]}6w

2 2 2
+ {2k B + 2k H16w’xx + 4k H66w’xy + Zk(kH66 + Fse)wx,y

26w’yy
+ Zk(kH16 + Fls)wx % + 2k(kH26 + Fzs)wy y + 2k(kH66 +

1
FGS)WY.X 'R [—ZRFSSUO,y - kF16uo,x “kFyg o,y

2 2
+ k Jzew,yy + k J66"’xy + k(kJ26 + Hze)wy,y

y=0 |x=0

"
o

+ k(kJ + H, . )y ]]}éw
66 66 X,y y=b

x=a (2.41)
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Equation (2.37) for Yo becomes:

b ra
= 2 = 2
I I {I4w Ve - I5w LI + k(kH26 + Fzs)w,yyy + k(kH11 + Fll)w’xxx
0 0

2

- (SkD45 + 9k F45 + A45)w,y + 3k(kH16 + F16)w‘xxy + k(F12
2
+ 2kH66 + kﬁlz + 2F66)w,xyy - (BkD55 + 9k F55 + Ass)w,x +
2 2
(K°Hgg + 2KFgg + Dgedw, oo+ (KTHyy + 2KkFyy + Dy 0¥y 0 *

2

2
2(k Hle + 2kF16 + Dls)wx, - (GkD55 + 9k F55 + A +

Xy 55 ¥y

2
+ 2kF26 + Dzs)wy,yy + (k Hls + 2kF16 + Dm)wy,xx +

2 2

(k H66 + k"H + 2kF + 2kF

12 66 12 * Dgg * D1o)¥y, yy ~ (6KDyy

2 1 3
+ 9kTF . + A45)wy + R [— 5 (kF66 + DSS)uo,yy -

VT

(kF +

16

1
Dyglug oy = (KFag * DoglVy yy + 2 (KF1g * D1g)Vo s ~

1 1
5 (KFgg + DgglVg xy * ‘ﬁ“[k‘szs + Hyglw, - (KFpg +

yyy

2
Dyg)wsy + K(kJgg + Hggdw, (o + (K'Jgg + 2KHgg + Fggl¥y vy

2
+ (k st + ZkH26 + Fzs)wy,yy]]}éwxdxdy

b
+ {k(ZkH + F. )w, _+ k(2kH, .+ F. . )w, + 2k(2kH, .+ F )w,
IO 12 12 Yy 11 11 XX 16 16 Xy

2 2
+ (2k“H + 3kF16 + Dls)wx,y + (2k H11 + 3kF11 + Dll)wx,x

16

2 2
+ (2k le + 3kF12 + D12)wy,y + (2k H16 + 3kF16 + Dm)wy,x

x=0
dy

1 1 1
+ 5 (-0F g + g Diglug y +(KFyg ¢ 3 D1e)vo,xJ}6Vx e
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h t2f

a
+ I {k(kﬂzs + er)w,yy + k(kH16 + Fls)w'xx + 2k(kH66 + Fss)w,xy
0

+D + D +

+ (K%H,. + 2KF

+ (k%W 16 16

+ 2kF

66 66 * Dgs¥x,y 16¥x, x

(RZH + 2kF + D

+ 2kF 66 * Deg'¥y, x

+

2
26 26 * Dogl¥y, y *+ (KHgg

1 [ 3
R [‘ 7 (KFgg + Dgglu, y = (KFyg + Dyglu, o = (KFpg +

+ —l-[k(sze + H

R +

1
Doglve,y = 3 (KFgg + Dgglvy « 26 ¥ yy

2
k(kJ66 + Hse)w,xy- (kF26 + Dzs)w + (k J66+ 2kH66+ Fss)wx,y

y=0
dx = 0

2
+ (K50, + 2KkHyo + er)wy,y]]}éwx
y=b

(2.42)
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And, finally, Eq (2.38) for vy becomes:

® 102, - T, K(kH,, + F,_)w - (6kD,, + OK°F,, +
4 V¥y T 5 Moy 22 * "22'Wryyy 44 44
00

A44)w,y + k(kH16 + F + k(ZkH6 + kH1 + 2F +

167% ox 6 2 66

2
F12)W sy + 3k(Kllgg + Fpgdwyy = (BKDyg + SKTFygt Aggdw,y

Xy

2 2 |
v (KHpg + 2kFpg + Dpglwy oy + (K7H g + 2KF, 0 + Dy dw, 0

2

+ (K%H,.. + K%H,. + 2KF.. + 2kF.. + D

66 12 66 12 * Dgg * Dyplvy o0 -

(6kD,_ + 9KZF

45 +

2
a5 * BqglV¥y * (KHyy + 2kFyp + Doolv, o

(k2H66 + 2kF.. + D + 2(k%H.. + 2KF._ + D

26 26

66 Ss)wy,xx 26)wy,xy -

2 1 3
(6kD,, + 9k Faq * A44)wy + —ﬁf[— 5 (kF,e + Dzs’“o,yy -

1
2 (KFgg + 2KF), + Dgg + 2Dyp)uy o = (KFpp + Dpo)v, oo+

1 1
(KFgg + DgglVg yxx = 3 (KFgg + Doglvy oo + ‘ﬁ‘[k(szz +

[N

2
sz)w: - (szz + Dzz)w’y + k(k-ljzs + st)w, + (k

yyy Xy Jao

2
+ 2kH22 + Ii'zz)wy‘yy + (k st + 2kH26 + Fzs)wx,yy]]}éwdedy

b
+ {k(kH + F,.)w, + k(kH + F,)w, + 2k(kH + Fp.)w,
IO 26 26 Yy 16 16 XX 66 66 Xy

2 2
+ (k HZB + 2kF26 + Dzﬁ)wy’y + (k HSG + 2kF66 + Des)wy,x +

2 | 2
(k"Hgg + 2kFgg + Dgglv,  + (K7H g + 2kFy o + Dygdv, 4
—l-[ L xr . +D..)v. - L (xF.. +D..)u ] v x=0dy
R 2 66 66" '0,x 2 66 66" "o,y y x=a
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b

a
+ I {k(Zksz + Fyo)w, o + k(ZKH o+ Foodw, 4 2k(2kHyo+ Fpolw, o
0

2 2
+ (2k H26 + 3kF26 + Dzs)wx,y + (2k"H + 3kF1 + Dlz)wx,x

12 2

2 2
+ (2k7Hyy + 3kFp, + Dyplvy, o + (ZK7Hys + 3KFpg + Dyglvy o

1 3

. -l-[k(szz

1
D22)vo,y -3 (2kF26 +D R + H +

26’ Vo, x g + Hopw, oy

2
k(ZkJ26 + Hze)w,xy- (Zsz + D22)w + (2k°J + 3kH +

2 22 22

y=0
dx = 0

y=b (2.43)

2
Fopl¥y,y + (2k'Jpg + KHyg + Fzs)wx,y]]}éwy

Several observations can be made concerning Eqs (2.39) to
(2.43). For a flat plate, small deflection theory dictates that
bending displacement is completely decoupled from membrane
displacement. If the radius of curvature, R, approaches
infinity, the five circular cylindrical shell panel equations
reduce to those of a flat plate. The two membrane equations for
u , Eq (2.39), and A\ Eq (2.40), will consist only of

o

extensional stiffness terms, Aij‘ and spatial derivatives of u,

and Vs &8s expected. Additionally, the three bending equations

for w, v and Vy in Eqs (2.41), (2.42), and (2.43) will consist

X’
only of bending and higher order stiffness terms and spatial
derivatives of w, L and wy. If <the higher order stiffness
terms are dropped, leaving only Aij and Dij’ the three flat
plate equations will reduce to those of (3), (4), and (20),
which were obtained from the 1lower order Mindlin transverse

shear strain modeling. For R not equal to infinity, membrane
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and bending displacement are coupled. To find the natural
frequencies and buckling loads of the circular cylindrical shell
panel, all five equations must be solved simultaneously. This
solution will be approximated using the Galerkin technique

discussed in the next section.
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GALERKIN TECHNIQUE

The Galerkin technique is an approximation technique that
will be used to solve the five coupled partial differential
equations. The general concepts of the method will be presented
first, and then its specific application to this problem will be
addressed. Most of the concepts presented here are from (11),
(20), and (22).

The classic Galerkin technique works directly with the
equation of motion of a particular system. For example,
consider the following system (the same form as Eqs (2.39) to

(2.43)):

JIDEOM(t(x,y))ét(x,y)dxdy + I BC1(¢(x,¥))8%(x,¥)| dy
Y X

+ I BC2(Z(x,y))8% (x,y)} dx = O
y (2.44)

X

where Z(x,y) is the degree of freedom, DEOM(Z(x,y)) is the
differential equation of motion that is a function of {(x,y) and
its spatial derivatives, and BC1({(x,y)) and BC2({(x,y)) are the
associated boundary conditions, also a function of {(x,y). The

approximate solution has the form:

I (x,y) =S g A ¢ (x,¥) (2.45)
n® p& W0 o

where Amn are unknown constants to be determined later and
¢mn(x.y) are known linearly independent comparison functions,

ie, functions that satisfy both the geometric and natural
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(force) boundary conditions of the system. (11) 1If, say, the
required degree of accuracy calls for M = N = 2, then Eq (2.45)

yvields:

T(x,y) = A11¢11(x,y) + A12¢12(X.y) + A21¢21(x.y) + A22¢22(x,y)

(2.46a)
and its corresponding variation from (22):

2 (x,y) N (x,¥)
S (x,y) —a-A_ll——éAll + —OA—IE—_éA

+ Gt(x,y)5A21 + X, Y) g0

12 0A21 0A22

22

¢11(x,y)6A11+ ¢12(x,y)6A12+ ¢21(x,y)6A21+ ¢22(x.y)6A22
(2.460b)

Since ¢mn(x,y) are comparison functions, the boundary conditions
in Eq (2.44) need not be considered. Therefore, Egs (2.46a) and
(2.46b) are substituted directly into the equation of motion

only:
I I DEOM(Z (x,y))6L (x,y)dxdy = O
Yy X

The following results:

,
I[DE0M<A11¢11<x,y) + ApP1a(0Y) + Ay By ()4 Agudyn (x,3))])
y X

(611 (X, 91681 1+ 81, (X,7)68 5+ &y, (X, ¥)6Ry 1+ 8,5 (x,7)68,,]dxdy = O

(2.47a)
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or

j I[DEOM(A11¢11(x,Y)
Yy X

¢11(x,y)6A11dxdy

I I[DEOM(A11¢11(x,Y)
Yy X

¢12(x,y)§A12dxdy

J I[DEOM(A11¢11(x,y)
Yy X

¢5,(Xx,¥)5A, ,dxdy

I I[DEOM(A11¢11(x.y)
y X

¢22(x,y)éA22dxdy

Since the variations

+
+

Byp®1p(X ) + Ay by (X,3)+ Agudyo(x,9)))-

+
+

Ayg®12(X,Y) + Ay 18,1 (X,9)4 Aoy, (x,3))]

+
+

Ay1pP10(X.Y) + Ay 18y  (X,3)+ Agydyn(x,3))]"

+

A1pP1a(Xe¥) + Ay by (X,¥)+ Aty (x,9)))-

0 (2.47Y)

of the constants, ©6A 6A12, GAZI’ and

11’

6A22 are arbitrary, the only way Eq (2.47) can be identically

zero is that each integral go to zero individually. Thus, after

canceling the variation to the right side, Eq (2.47) becomes:

I I[DEOM(A11¢11(x,y)
XYy

¢11(X.y)dxdy =0

+A1P1o(XY) + Ayydy) (X,)+ Agydyy (x,3))])
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II[DEOM(A11¢11(X’V) + A12¢12(x,y) + A21¢21(x,y)+ A22¢22(x,y))]'
Xy

¢12(x.Y)dxdy =0

I I[DEOM(A11¢11(x,y) + A12¢12(x,y) + A21¢21(x,y)+ A22¢22(x.y))]‘
Yy X

¢21(x.y)dxdy =0

[ [(omoMca o)y ce9) + Aype15 030 + ay185; (0,304 Ayptyy (3]
XYy

®y0(X,y)dxdy = O (2.48)
The single equation of motion in Eq (2.44) has been transformed
into four equations which must be solved simultaneously to

obtain A A

110 Ao’ A21, and A22. A key characteristic to note
here is the variation of the degree of freedom, 6f(x,y), in each
of the four equations has been replaced with a single term of
the approximate series for (x,y) in Eaq (2.46). In general
there will be (M x N) terms in each equation and (M x N)
equations, depending upon the degree of accuracy chosen in Eq
(2.45).

Galerkin’s technique will now be applied to the specific
problem of this thesis. There are two major differences between
this problem and the classic problem presented in Egs (2.44)
through (2.48). First, there are five coupled partial
differential equations rather than just one. To account for
this all five degrees of freedom assume approximate solution

forms as shown (4):
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g A v (x,¥)
11’1—1 mn xXxmn

wx(X.y) =

b
v (x,y) = g 5 B v (x,¥)
y m~1 n=1 mn- ymn

b

wix,y) = C w (x,¥)
] pn& ©Wnm
u (x,y) = g S E u (x,y)
° m& n& T OE0
v (x,y) = g G Vv __ (x,¥)
o n¥1 n&1 mn omn (2.49)
where, as before, Amn’ an, Cmn’ Emn’ and Gmn are unknown
constants to be determined. The second difference 1is =&

fundamental departure from the classic Galerkin technique, and
follows the same line of reasoning presented in (3), (21), and
(23).

By examining Eqs (2.39) to (2.43), it is obvious there are
very complicated natural boundary conditions. It would be
virtually impossible to choose comparison functions to
approximate the series in Eq (2.49). Alternatively, men(x,y),
Yo (X ¥)s W (X,¥), u . (x,¥), and Vv

ymn
admissible functions: functions that satisfy only the geometric

omn(x,y) are chosen to be
boundary conditions. As a consequence the Galerkin technique
will be applied to the boundary conditions as well as to the
equations of motion. For the example in Eq (2.44), this means
the line integrals for the boundary conditions are included
along with the double integral for the equation of motion when
the Galerkin equations in Eq (2.48) are generated. The boundary

conditions are treated the same way as the equation of motion:
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replace I (x,y) in BC1({(x,y)) and BC2({(x,y)) with the
approximate solution in Eq (2.46), and replace 6 in each line
integral with a single term in the approximation series. (Note
that if it were possible to choose comparison functions for the
five equations in Eqs (2.38) to (2.43), which fundamentally
satisfied the natural boundary conditions, then only the
equations of motion, ie, the double integrals, would have to be
dealt with.)

With the general concepts in hand, the Galerkin technique
will now be applied to the particular boundary conditions used

in this thesis.
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SMPLY~SUPPORTED BOUNDARY CONDITION

In this section the admissible functions are found that
satisfy simply supported boundary conditions on all four edges
of the circular cylindrical shell panel. These functions will
then be inserted into Eqs (2.39) to (2.43), and then the
equations will be integrated. The equations will then be ready
for the eigenvalue formulation and the subsequent determination
of the natural frequencies and buckling loads.

For the panel simply supported on all sides, the following

bending boundary conditions exist:

At x = 0 and x = a
w=w o= 0

and

At y = O0Oand y = b
W=y s 0

As Jones (9) states, there are four kinds of membrane simply
supported boundary conditions possible. An S-2 type condition
is used here such that st an edge of the panel, the normal
displacement is not zero and the tangential displacement is

Zero:

At x = 0 and x = a

ug »# 0 and vo =0
and
At y =0 and y = b

U = 0and v_ > 0O

(o] o]
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Therefore, the admissible functions in Eq (2.49) become:

Vx(x,y) = g g Amncos(mnx/a) sin(nny/b)
m=1 n¥1
v (x,y) = g S B sin(mnx/a) cos(nny/b)
Y n¥1 n%¥ ™
wix,y) = g Cmnsin(mnx/a) sin(nrny/b)
n¥l n¥1
uo(x,y) = g Emncos(mnx/a) sin(nny/b)
m=1 n¥1
v (x,¥y) = g G __sin(mnx/a) cos(nny/b)
o n& % o (2.50)

The single terms associated with the wvariations of the

degrees of freedom are:

Su  — cos(pnx/a) sin(qny/b)
év_ — sin(pnx/a) cos(qny/b)
dw — sin(pnx/a) sin(qny/b)
éwx — cos(pnx/a) sin(qny/b)
6y, — sin(pnx/a) cos(amy/b) (2.51)
Notice the indices in Eq (2.51) are p and q. As explained in

the last section, the single terms that replace the variations
of the degrees of freedom ¢govern the number of Galerkin
equations. Therefore, the number of terms in each equation is
governed by m and n, and the number of equations is governed by
p and 9. (See Appendix E.)

This thesis would not have been possible without the use of

a symbolic manipulation program such as MACSYMA (25). This
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artificial intelligence based program proved to be invaluable in
the algebraic manipulation and integration of the equations of
motion and boundary conditions in Eqs (2.39) through (2.43).

The step~-by-step process taken to utilize MACSYMA for
generating the Galerkin equaetions for Eqs (2.39) through (2.43)
is outlined below. (Note at this point ﬁz and ﬁe are set equal
to zero, since only axial buckling is considered.)

1. Substitute Eq (2.50) into the five equations and evaluate
the appropriate derivatives. For example, in Eq (2.39) there

are terms such as u and ¥y that need to be

Y yyy? X, XY

o,yy’
evaluated.
2. Substitute the single term expressions for éuo, 6vo, Sw,
éwx, and 6wy from Eq (2.51) into the five equations.
3. Integrate all five equations according to guidelines
outlined in Appendix C. For each equation this includes ﬁ
double integration for the equation of motion and two single
integrations for the edde boundary conditions. The results of
the integration depend directly upon the values of m, n, p, and
q; there are nonzero results for only two cases:
Case (1): m=pand n = q
Case (2): m#= p, (m + p) odd and n # q, (n + q) odd.
If m,n,p, and qQ do not meet the criterion of these two cases,
the five equations become equal to zero when integrated.
4. Collect terms and simplify the equations.

The generated Galerkin equations for case (1) are shown

below.

57

n




-

Equation (2.39) for u, becomes:
{nzaq2(3h2D66 - 4F66)/(8bh2R)}Amn +
2

2 2 2
{% pa(3h D66 + 6h D12 - 4F66 - 8F12)/(24h R)}an ~

3__2 2,2 2
{[" Pa (BFGS + 4F12) - 3nb“h pAlz]/(Ith R)}Cmn -

{n2[4R2(a2q2A66 + vPp2a ) + a2q2D66]/(163bR2)}Emn -

{ﬂzpq[4R2<A66 + A, - DSS]/(ISRZ)}Gmn =0 (2.52)
Equation (2.40) for v, becomes:

{nzpq(ahznes - 4F66)/(24h2R)}Amn +

2 2.2, .. 2 2 2 2 2
{n [a a®(6n%D,, - 8F,,) + b2pZ(4F, - 3h Dee)]/(24abh R)}an

2 2,2

- {naq(4n2q F22 ~ 3b“h A22)/(12b2h2R)}cmn -
{nzpq[4R2(A66 + AL - DSG]/(ISRZ)}Emn -
{n2[4R2(azq2A22 + b2p2A66) + b2p2D66]/(16abR2)}Gmn <

-’ 2 - ! 2
- {abI2 /4}w an + {naq13 /4 Cmn (2.53)
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Equation (2.41) for w becomes:

2(, 2 2 2 2 2
{—np[R [4n a®q®(BHg, + 4H,, - 6h°Fgy - 3h°F,,)

2 2 2

55 = 8hZD . + 16F55)]

+ 4n2a2q2(4J66 - 3h2366)]/(36a2bh4R2)}Amn -

+ 4n b2p2(4a11 - 3n°F; ) + 9a%b2 (hia

{nq[R2[4n2a2q2(4H22 - 3n%F,,) + an®bp®(BHy, + 4H,, - 6h%Fy,
- 30%F,,) + 9a®b%(n%a,, - 8n?D,, + 16F44)] + anfa?q®(4y,, -
3h%H,,) + e?b?h?(9n?D,, - 12F22)]/(36ab2h4R2)}an -
{[n2R2[16n2a4q4H22 + a?b?q®(6an®pPH , + 32n%p%H , + 9e’nta,,-
72a%h%D,, + 1440%F ) + 16n%bUp%H,, + 9a%bp?(n%a,, - 8n?D,,
+ 16F55)] + 16ntatqly,, + 8nfaZule®(2nply,, - 3a%n%F,,) +
9a4b4h4A22]/(36a3b3h4R2)}cmn -
{#p(anzquse + an?dPF , - 3b2h2A12)/(12bh2R)}Emn -
)
{naq(4n2q2F22 - 3b252A22)/(12b2h2R)}Gmn =
{npr5/4}u\2Am + {naqf5/4}w2Bm - {[lﬁﬂz(azqz + bzpz)I7 + " ﬁ
9a2b2h411]/(36abh4)}w2Cmn + {nszz/(4a)}ﬁlcmn (2. 54) o
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Equation (2.42) for Yy becomes:

2( 2 2 2 4 2
{—[R [n a2q?(16H + 9n¥Dg, - 24n%Fgg) +

2 4 2 2,.2,. 4 2
nt 11+91’1D11--24h F11)+9ab(hA55-8hD +

b2p2(16H 55

222 2 4 4.2
16F55)] + n®a®q®(16Jg, - 24h"Hgg + Sh FSS)]/(36abh R )}Amn -
2 4 oan? 4
pa[16(Hgg+ Hyp)+ Oh*(Dge+D,,)~24h"(Fgg + Fyp) [/(3607) (B
12 66

2(. 2 2 2 2 2 2.2 2
- {np[R [4n a2q®(BHgg + 4H,, - 6h°Fgg - 30°F;,) + an“b P (4H ,
2

2.2, 4 2 2 22
- 3n%F,,) + 9a%b°(h%Ag, - BR“Dyg + 16F55)] + anfafqf(adgy -

2 2. . 4.2
3h Hss)]/(36a bhiR )}cmn '
{nzaq2(3h2D66 - 4F66)/(8bh2R)}Emn .

{ﬂzpq(Sthee - 4F66)/(24h2m}cmn =

AR AR
{~avT,ra)e%ay, + {roeTyrafo?c,, (2.55)
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And finally, Eqn (2.43) for wy becomes:

2 4
24n®(Fg, + Fy 00 |/(3enh)}a_ -
66 12 mn

2(,,2,.2,2 4 2 2,22
{[R [n a“q (16H22 + 8h'D - 24h F22) + n“b“p“(16H +

22 66

4 2 2.2 4 2
oh®Dg, - 24n°Fg,) + 8a%bP(n%a,, - 8n?D,, + 16F44)] +

2 2 2 2 4 4.2
n?a?q?(16J,, - 24n°H,, + 8h Fzz)]/(3sabh R )}an -
{nq[R2[4ﬂ2a2q2(4H22 - 3h2F22) + 4n2b2p2(8H66 + 4H,, - Sthee
2 2.2, 4 2 2 2 2
- 3n%F,) + 9a%%(n%a,, - 8h%D,, + 16F44)] + an®eq®(4d,, -

2 2
3h H22) + 3a

b2h2(3h2022 - 4F22)]/(36ab2h4R2)}Cmn +
2 2 2
{n pq[3h (Dgg + 2Dy,) - 4(Fgg + 2F12)]/(24h R)}Emn +
°o[ 2 2,. 2 2 2 2 2
{n [a a?(6n?D,, - 8F,,) + bPp2(4Fy, - 3h D66)]/(24abh R)}Gmn

= {_apT 2 I 2
= { abI4/4}w Bn* {naq15/4 Coun (2.56)

The set of Galerkin equations for Case (2) are shown below.
That is, when m # p, (m + p) odd and n # q, (n + q) odd, the
following set of Galerkin equations are obtained when Eqs (2.39)

to (2.43) are integrated:
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Equation (2.39) for u becomes:

{-an p2(6h2D16 - 8F,¢) + n?(30%D,, -
# 47, )] /130%R(e% - wy(a® - n2>J}Amn -

{ZangQ(3h2D26 - 4F26)/[bh2R(p2 - m?)(q? - nz)]}an +

{4mnq[n2(4b2p2F16 + eaznzpzs) + b2(8n2m2F16 -

2,2

12a”h 2

by /13mab"h?R(2% - n?)(a? - nPiife,, 4

{ana(e® + u?ra/10s? - w¥y(a® - yafE,, ¢

{4mq(b2p2A16 + an?ayg) /ab(p? - n)(d® - nZ)J}Gmn =0
(2.57)

From Equation (2.40) for Vo becomes:

{-np[4a2q2(3h2D26 - 4F,) + 2b2m2(4F16 -

3h2D16)]/[3abh2R(p2 - m?)(a? - nz)J}Amn -

{mnzp(Sthzs - 8F26)/[3h2R(p2 - m?)(q?% - nz)]}an +

2.2 2 2 2,2 2
{4mnp[2ﬂ a“(2q9” + n )F26 - 2n°b"m F16 -

2 2

3a bzthze]/[Sﬂa bhR(p® - m%)(q® - nz)]}Cmn +

{4np(a2q2A26 + b2m2A16)/[ab(p2 - mz)(q2 - nz)l}Emn +

{4mp(q2 + nz)Azs/[(p2 - mz)(q2 - nz)]}Gmn =0 (2. 58) -Jﬁ
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Equation (2.41) for w becomes:

2(.. 2 2 2 2 2.2 2
{pqn[R [1en a®n®(4H,, - 30°F,q) + 48n°b°m°(4H o -

2 2

2.2, 4 2(. 2.2
3n°F, ) + 36a”b2(h?a,, - 8n%D, + 16F45)] + da [4n n?(4J, ~

2 2

3h%H,,) + 3b2h2(3h2D,,- 4F26)]]/[9ﬂab h4R2(Pz-m2)(q2-n2)]}Amn

2 2,2 2 2

+ {mpq[32[4en2a2n2(4326 - 30%F,q) + 16n%b?mP(4H, 4 - 30°F, ) +

2

2,2, 4
36a"b"(h A45 - 8h D45 + 16F45)] +

16n2a%n?(4J, - 3h2H26)]/[9ﬂa2bh4R2(p2 - w%)(q® - n2)]}an +
2 2, 22 2 2 2.2, 4 2
{mnpq[R [256n (a%n®H,, + bZm’H ) + 72a%b%(h%a - 8nPD,, +
2 22
16F45)] + 32a%(an®n?y, . -
367h%F ) | /100?02 (2% - ) (a” - nz)]}cmn +
2 22 2.2 2
{4npq(2ﬂ a’n F26 + 2n“b°m F16 -
a?b%h?a,,) /nab?h?R(p% - nf)(a?® - nz)]}Emn +
222 2.2 2
{4mpq(6n a ™ n Fzs - 2n°bm F16 -
3a2b2h2a, ) /[37a%bh?R(p% - m%)(q% - nZ)1G__ = 0
26 mn (2.59)
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Equation (2.42) for wx becomes:

{4nq[32p2H16 + ond(p? + m2)D16 - 12n2(3p?% +

n?)F 6] /tene? - w?) (e - nz)]}Amn .

{mq[4R2(n2b2p2(32H16 + 9n%D_ . - 36n%F ;) + nZa®n?(16H,, +
oh'D,, - 24n%F,g) + an®bZm®(3n®F , - 4H ) + 9a%bP(h%a , -
8h?D, . + 36F45)] + an?a®n?(160,, - 24n%H,, +
9h4F26)]/[9n2abh4R2(p2 - w?)(q? - nz)J}an +
{mnq[4R2[8n2b2p2(8H16 - 3n%F, ) + an®aPn?(dH,g - 30%F,q) -
anoPul (4B, + 30%F ) + 9a%bP(hta g - BnPD, 4 16F,)] +
4a2[4n2n2(4J26 - 3n%H,,) +

3a%b%n?(3n%D, - 4F26)]]/[9nab2h432<p2 - w?)(q? - “2)]}Cmn -

{2nq[3h2(p2 + 2n?)D,, - 4(20% +
w®)F 6] /130%R(D% - wP)(a® - nB)1}E, ¢

2.2 2 2, .2 2 2 2
{2mq[3b h“p D16 + 4b°(m” - 2p )F16 + 2a“n (4F26 -

2

2 2 2 2 2 -
3h Dzs)]/[Sabh R(p™ - m™)(q” - n )]}Gmn =0 (2.60)
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Equations (2.52) to (2.61) are now ready to be put in matrix
format and then input into the eigenvalue subroutine to solve
for either wz or ﬁl‘ The details of this procedure are

explained in the next chapter. ’!ﬁ

+ And finally, Eq (2.43) for vy, becomes:

{np[R2[4n2a2[16(2q2 - n2)H26 + 9h4q2D26 -

2 4

+ ship 2

2 2 2 2 2
12h"(39@" - n )F26] + 4n"b"m (16H16 16 ~ 24h FlG) +

2.2, 4 2 2 2 2 2
36a?bZ(h%,, - 80D, + 16F45)] + 4n2a [16(2q - n®)J,q -

4 2 4,2, 2 2

12n2(34% - nZ)H26 + 9hiq er]]/(Qﬂzabh R (p-m )(qz—nz)]}Amn

4mp 32q2H + 9h4(q2 + nz)D -
26 26

1202(3a% + pPFyg)/iont(s® - wPya - nB)my, +

{mnp[4R2[4n2a2[4(4q2—n2)H26- 3h2(2q%+ n2)F26] + 4n2b2m2(4H16

2 2,.2,.4 2 2 2 2
- 3h FIS) + 36a"b " (h A45 - 8h D45 + 16F45)] + 16n”a [4(2q -

n%)J,e - 3h2q2326]]/[9na2bh4R2<p2 - %) (s - “2)]}Cmn -

{2anp[3q2h2D26 - 4(2q%- nz)Fzs]/[bth(pz— nZ) (q®- n2)]}Emn -

{2up[3a%%0,6- 4(2a%- n?)Fyq)/1307R2- 0®) (e~ nP)1)ey, = O
(2.61)
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CLAMPED BOUNDARY CONDITION

In this section the admissible functions that satisfy
clamped boundary conditions on all four edges of the circular
cylindrical shell panel are chosen. The following bending
boundary conditions exist:

At x = 0 and x = a

w:wx:wy:O
and
At y = Oand y = b
W=y =y =0

X y
The membrane boundary conditions will be the same as those in

the previous section: from Jones (9), a C-2 type boundary

condition.

At x = 0 and x = a

u, * 0 and Vo = 0
and
At y = Oand y = b
u, = 0 and Vo ¥ 0

The admissible functions in Eq (2.49) become:
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v _(x,y) = g g A_ sin(mnx/a) sin(nny/b)
x m=1 n<=1 mn
v (x,¥y) = s B sin(mnx/a) sin(nny/b)
y m¥1 n=1 mo
wi(x,y) = Cmnsin(mﬂx/a) sin(nny/b)
m=1 n<=1
uo(x,y) = S Emncos(mnx/a) sin(nny/b)
m=1 n=1
v (x,y) = g g G__sin(mnx/a) cos(nny/b)
o &1 p&y W0 (2.62)

The single terms associated with the variations of the degrees

of freedom are:

6uo — sin(pnx/a) sin(qny/b)
év_ — sin(pnx/a) sin(qny/b)
6w — sin(pnx/a) sin{(qry/b)
Sy, — cos(pnx/a) sin(qmy/b)
éwy — sin(pnx/a) cos(qny/b) (2.63)

And, as in the simply supported case, the indices for the single
terms are p and q; m and n govern the number of terms per
equation, and p and q govern the number of equations.

The procedure for generating the Galerkin equations is
exactly the same as in the last section. However, as outlined
in Appendix C, after intedrating Egs (2.39) to (2.43), four
cases give nonzero results:

Case (1): m=pand n = g

Case (2): m=pand n > q, (n + q) odd
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Case (3): m# p, (m+ p) odd and n = q

Case (4): m» p, (m + p) odd and n * q, (n + q) odd
If m,n,p, and q do not meet the criterion of these four cases,
the five equations become equal to zero when integrated.
The generated Galerkin equations for case (1) are shown below.

Equation (2.39) for u, becomes:

o - Amn + 0 - an -

{np[n2q2(8F66 + 4F),) - 3b2h2A12]/(12bh2R)}Cmn -

{n2[4R2(a2q2A66 + bzpzAll) + azquss]/(IGasz)}Emn -

2 2 2 =
{n qp[4R (Agg + Ayp) - Dss]/(ISR )}Gmn =0 (2.64)

Equation (2.40) for v, becomes:

2 2, 2

2,2
- 3bh Azz)/(12b h R)}Cmn -

2
{ﬁaq(4n q F22

{nzpq[4R2(A66 + AL - 066]/(16R2)}Emn -

{#2[4R2(a2q2A22 + bPp%acc) + bzpzDss]/(ISasz)}Gmn =

=’ 2
{7aq13 /4}w Con (2.65)
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Equation (2.41) for w becomes:

{[n2R2[32ﬂ2a2b2p2q2(2H66 + Hyp) + 9a4b2q2(h4A44

2, 4 4 4 4 2.4 2,. 4 2
16F44) + 16n°(a"q H22 + b'p Hll) + 9a“b*p“(h A55 - 8h D55 +

16F55)] + 16n4a4q4J22 + 8n2a?b2q?(2p2n?

4.4 4 3,3,4,2
8a'b h Azz]/(SSa b"h'R )}Cmn -

{np[4n2q2(2F66 + Fyp) - 3b2h2A12]/(12bh2R)}Emn -

2 2 2 2 2 2
{naq(4n a%F,, - 3b%h%a,,)/(12b%h R)}Gmn

{—[16n2(32q2 + b2 1, + 9a2b2h411]/(3sabh4)}w2cmn +

{nszz/(4a)}ﬁlcmn
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- 8h°D,, +

J 22) +

4

(2.66)
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Equation (2.42) for Yoy becomes:

66) *

2(.2 2 2 4 2
{-[R [n a®a®(16Hgg + 80Dy, - 24n’F

2 4

n b2p2(16H11 + on?D 2

2.2, 4
11 ~ 24h Fll) + 9a”b"(h A55

2.2 2

- 8h°D

55 ¥

16F55)] + n%a%q® (160, - 24h2366 + 9h4F66)]/(36abh4R2)}Amn -

2(.2 2 2 4 2 2
{[R [n a%a®(16H,5 + 9h%D,5 - 24h°F,.) + n

4 2 2

8h D - 24h

16

n2a%q%(164J 2

26

. . . = J.abT 2
0 Cp +0 " E +0 G = { ab14/4}w Arn

And finally, Eq (2.43) for wy becomes:

{—[Rz[ﬁ2a2q2(16H26 + 9h4D26 - 24h2F26) +

2

n2b2p2 (16H 4

+ onp 2

2,2,.4
16 - 24h F16) + 8a"b"(h A

16 45

2.2 2

16F45)] + n2a2q(164 2

28 ~ 24h

{[Rz[nzazqz(ISsz + 9h4D22 - 24h2F22) + n?

4

ghip 2

2

n2aq2(16J 4

2

. . : = {_abT 2
0 Cpy *0-E +0-G = { abI4/4}w B,

70

b2p2(16H1

2,2, 4
F16) + 9a"b"(h Ayg — Bh D45 + 16F4

b2p2(16H6

4.2
9 * 9h Fzz)]/(aﬁabh R )}Bm

6

5)] *

4 4.2
- 24h H26 + Sh FZB)]/(SSabh R )}an +

2

+

(2.67)

- 8h"D +

6

2.2, 4 2
Fgg) + 8a’bZ(ha,, - 8n%D,, + 16F44)] +

+
n

45

4 4,2
st + 6h FZG)]/(36abh R )}Amn -

+

(2.68)
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The set of Galerkin equations for Case (2) are shown below.
P That is, when m = p and n # q, (n + q) odd, the following set of
equations are obtained when Eqs (2.39) to (2.43) are integrated.

Equation (2.39) for u becomes:

[
{-nnpq(Sth16 - 4F16)/[2h2R(q2 - nz)]}Amn -
b nnpa|3h2(D.. + 2D..) - 4(F.. + 2F..)|/[6n°R(q% - n%)]1}B_ +
66 12 66 12 mn
0-C_+0-E_+0-G_ =0 (2.69)

Equation ( 2.40) for Vs becomes:

2 2 2 2 2
{—nﬂ[Za q (3h D26 - 4F26) + b p (4F16 -

2

3h Dls)]/[Sabth(qZ - n2)]}Amn -

2.2
- 4F22) + b"p (4F66 -

{ nn[2a2q2(3h2D22

3h2D66)]/[6abh2R(q2 - n2)]}an +

0 Cpy + 0 By + 0 - Gy = {abnT, /inta® - n?)1}o%B,,

mn mn

(2.70)
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Equation (2.41) for w becomes:

2 2,2 2 2 2.2 2
{nq[R [12n b®p (4H16 ~ 3h F16) + 4n“a“n (4H26 -

2 2

2,.2,.4
3h F26) + 9a”b" (h A45

2 4.2 2

3h

2

— BheF 2 2

6 - 3h F12) + 4n

16

20, 2.2 2
{qn[R [4n b?p?(8H,, + 4H 56

2 2

2,.2,.4
- 3h F22) + 8a"b"(h A44

2 2, 4.2, 2

3h

. . . _ = 2 _ 2 2
0 Cmn + 0 Emn + 0 Gmn = {anq15/(q n )}0 an

2(. 2 2
- 8h?D,, + 16F45)] + a [4n n?(4J,

2(, 2 2
- 8h°D,, + 16F44)] +a [4n n?(4J,, -

6 "

Hpg) + 3b%h%(3n2D, . - 4F26>]]/[9ab2h RZ(q® - nz)]}Amn .

2 2
a“n (4H22

2

2,2 2 4 2
H22) + 3b"h” (3h D22 - 4F22)]]/[9ab h'R"(q” - n )]}an +

(2.71)
Equation (2.42) for Yy becomes:

o - Amn + 0 - an -
{qn[R2[12n2b2p2(4H16 - 3n%F ) + anPnZaZ(an,, - 30°F,.) +
ga%b%(h%a,, - 8n%D,, + 16F45)] + a%[an®n?(4d,q - 30%Hyg) +
36%n%(3n%D,4 - 4F26)]]/[93b2h4R2(q2 - nz)}}cmn +
{nnPQ(3h2D16 - 4F16)/[2h2R(q2 - nz)]}Emn -
{nq[b2p2(3h2D16 - aF ;) + 2e%n?(4aF, -
3h2026)]/[sabh23(q2 - nz)]}cmn = 0 (2.72)
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And finally, Eq (2.43) for wy becomes:

o - Amn + 0 - an -

2(. 2.2 2 2 2 2 2 2
{qn[R [4n b%p?(BHg + 4H,, - 6h°Fge - 3h°F,,) + 4n’n®a’(4H,,

2 2(. 2.2
- sn?p,, + 16F44)] + a [4n n2(4d, . -

2 2,2, 4

4

2 2, 4.2

2.2 .2 2 2
3h°H,,) + 3b°h%(3h°D,, - 4F22)]]/[9ab h¥R%(q® - n )]}cmn +

{ﬁnpq[ahz(oee +2D,,) - 4(Fgq + 2F12)]/[6h2R(q2 - nz)]}Emn -

{nq[b2p2(3h2D66 - aFg) + 26%n? (4F,, -

3h2

2 2 2 - + 2 _ 2 2
Dzz)]/[Sabh R(Q@q® - n )]}Gmn = {aan5/(q n )}w Cmn
(2.73)
The set of Galerkin equations for Case (3) in which m # p, (m+p)
odd and n = q are shown below.

Equation (2.39) for ug, becomes:

{nmaq2(3h2D66 - 4F66)/[2bh2R(p2 - mz)]}Amn -

{nmaq2(3h2D26 - 4F,;)/(2bh%R(p? - mZ)J}an +

0 - Cmn + 0 - Emn + 0 - Gmn =0 (2.74)




Equation (2.40) for v, becomes:
{-ﬂpqm(shznss - 4Fg)/6n%R(p% - mz)]}Amn -

{"qu(3h2D26 - 4F,)/(6n°R(p? - mz)]}an +

0 'me+° -Em)+0 -ijzo (2.75)

Equation (2.41) for w becomes:

{mp[R2[4n2a2q2(8H66 + 4Hy, - ethss - 3h2F12) +
2.2 2 2 2.2, 4 2

an®vZn? (4H,, - 30°F,,) + 9a®b%(h%a,, - 8D, + 16F55)] +
2

an a?q2(4J66 - 3h2H66)]/[9a2bh4R2(p2 - m2)]}Amn +

{mp[R2[12n2a2q2(4H26 - 3h2F26) + 4n2b2m2(4H16 - 3h2F16) +

2.2 4 2 2 2 2
ga?b?(n%a,, - 8n%D,, + 16F45)] + anfale®(4d, -

3h2H26)]/(9a2bh4R2(pz ~ mz)]}an +

. . . - _ - 2 _ 2 2
0] C + 0 E + 0 G = {bmpIs/(p m )}w Amn
(2.76)

.
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Equation (2.42) for wx becomes:

o - Amn + 0 - an -

{mp[R2[4n2a2q2(8H66 + 4H12 - 6h2F66 - 3h2F12) + 4n2b2m2(4H11

a2 2.2, 4 a2 2.2 2 _
3n%F,,) + 9a°b%(h%A.. - 8hZD,, + 16F55)] + an2aq®(4ug,

3h2866)]/[9a2bh4R2(p2 - mz)]}cmn +
{napq2(3h2D66 - 4F66)/[2bh2R(p2 - mz)]}Emn +

2 2 2 2 _ = 2 2 2
{nmpq(3h Dss- 4F66)/[6h R(p~—-m )]}Gmn— {bmpIs/(p - m )}w Cmn
(2.77)
And finally, Eq (2.43) for wy becomes:

0O - A + 0 - B -
mn mn

2(.. 2.2 2 2 2.2 2 2
{mp[R [12n a?q?(4H,g - 30%F,q) + 4nPbin®(4H,, - 3n%F ) +

2.2, 4 2 2 2 2
9a?b?(h%a,, - 8n%D,, + 16F45)] + an2afq®(ad,, -

3h2H26)]/[9a2bh4R2(p2 - mz)]}cmn +

{napq2(3h2D26 - 4F26)/[2bh2R(p2 —mz)]}Emn +

2 2 2 2 _
{nmpq(3h D26 - 4F26)/[6h R(p™ - m )]}Gmn =0 (2.78)

The last set of Galerkin equations is for Case (4) in which m*p,

(m + p) odd and n # q, (n + q) odd. These are shown below.
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Equation (2.39) for u, becones:

{4mnq[2n2b2(2p2 + mz)F16 + anaznzee +
36%b%n%A, 6| /tamabZhZR(p? - w?)(a? - nP)1)cy, +

{4nq(p2 + mz)Ale/[(p2 - m2)(q2 - nz)l}Emn +

{4mq(b2p2A16 + afna, ) /ab(p? - w?)(q® - nzn}cmn =0
(2.79)
Equation (2.40) for Vo becomes:
0] Amn + 0 an +
22,2 2 2 2 2
{4mnp[2ﬂ a“(2q” + n )F26 - 27n°m“b F16 -
3a2b2h2A26]/[3na2bh2R(p2 - %) (q? - nz)]}cmn +
{4np(a2q2A26 + vPuA ) /Tab(p? - wé)(d® - nz)]}Em +
2 2 2 2.2 2 _
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16F45)] + 32

2,2
3627 ) /1

{4npq[2n2(a2n2F26 + bP"m°F

a2b2h2

{4mpq[n2(632

2,2 2

3a“b“h AZG]/[Sna

Equation (2.42)

{anpq(16H16 + ondp, . -

24h°

{4mnpq[16(H6

24n%(Fyg + Flz)]/[9h4(p2 - m%)(q® - nz)]}smn +

Equation (2.41) for w becomes:

{mnpq[R2[256n2(a2n2H + bzmzﬂls) + 722%0%(h%a.. - 8n%D,. +

Azs]/[nab

Fig)/I9n% (0% - w®)(d® - n2>1}Amn +

26 45 45

9a?b%n?R%(p? - n?)(q® - nzn}cmn +

2 2
187 ~

nR(2% - w?)(a - n®)1fEy, ¢

2

nF 2 2

- 2b"m”F

26 18) ~

%oh?R(p? - w?)(q® - nz)]}cmn =0
(2.81)

for Yy becomes:

16

4
6 + le) + 8h (D66 + D12) -

. Emn + 0 - Gmn =0 (2.82) .ﬂ
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And finally, Eq (2.43) for wy becomes:

4
{4mnpq[16(866 + le) + 8h (D66 + Dlz) -

L 2an?(Fgg + Fyp)|/19n4 % - w¥)(a® - n2)]}Am +
4 2 4, 2 2 2 2
{anPQ(IGHZS + 8h D26 - 24h er)/[Qh (p” - m")(@" - n )]}an
+ 0 - cmn + 0 - Emn + 0 - Gmn =0 (2.83)

Equations (2.64) to (2.83) are now ready to be put in matrix

format and then input into the eigenvalue subroutine to solve

2 or N

for either w 1

- -

78




II1. DISCUSSION AND RESULTS

This chapter will describe the computer program used to
calculate the natural frequencies and buckling loads. It will
also give physical descriptions of the circular cylindrical
shell panels used and will describe the subsequent analysis

performed with those panels.

COMPUTER PROGRAM

One FORTRAN program was written for both boundary
conditions. Both programs consist of a main program which
simply receives the user input data and calls two subroutines
that perform the bulk of the work. The first subroutine
calculates the stiffness matrix elements in Eq (2.16). The
second subroutine uses these stiffness terms to set up the
eigenvalue problem, and then calls a subroutine from the IMSL to
solve for the eigenvalues and eigenvectors. A complete listing
of the program is in Appendix D. The program is discussed in
detail below.

The main program, entitled "MAINTHESIS", receives the input

data and calls the two subroutines. The following data is
collected:
1) An integer flag ("1" or "2"): *1" to perform a

vibration problem, and "2" to perform a buckling problem
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2) a, length in x direction

3) b, circumferential length in y direction
4) R, radius of curvature

5) h, laminate thickness

6) NPLYS, number of plys in the laminate

7) ei’ orientation angle of each ply

8) El’ modulus in the 1 direction

9) EZ’ modulus in the 2 direction

10) G12, shear modulus in the 1,2 plane

11) Vigs poisson’s ratio

12) p, mass density (same for each ply)

13) M = N, maximum number of terms in each admissible

function

The main program declares all variables and arrays double

precision and allocates workspace for the eigenvalue

calculations. The largest problem this program will handle is
M=Nz=10. From Egs (2.49), (2.50), and (2.62), each admissible
function can be approximated by a maximum of 100 terms,
resulting in an eigenvalue problem that involves (500x500)
matrices. The main program also calculates the following

engineering constants:

Vo1 = Vyp " Ep/Ey
Gy3 = Gyp
Gpy = 0.8G,,

It then uses the ply layup information and the engineering

constants as input to call the laminated stiffness subroutine.
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The laminate stiffness subroutine named “"LAMINAT"
calculates the extensional, bending, and the higher order
stiffness elements of Eq (2.16). The following restrictions
apply: the laminate must be symmetric, and only the orientation
angle ei may change from ply to ply (the density, thickness, and
engineering constants remain the same). The subroutine uses the
1 Bpr G1p0 G130 Gp30 o
Vig» and Yoy It first calculates the reduced stiffness terms,

G G

following input data: h, NPLYS, ei’ E
[Qij]’ from Eq (2.11). Then it calculates the transformed
reduced stiffness ternms, [ﬁij], from Eq (2.13) for each ply by
looping from the first ply at the bottom of the laminate to the
last ply at the top. For each ply, the extensional, bending,
and higher order stiffness terms are calculated and summed
together according to Eq (2.18). The output is returned to the
main program, printed, and then used as input to the subroutine
"GALERK".

Subroutine "“GALERK" creates the stiffness and mass/inertia
matrices, forms the eigenvalue problen, solves for the
eigenvalues and eigenvectors, and determines the mode shape along
the midlines of the laminate. In other words, it calculates
w(a/2,y) and w(x,b/2). The subroutine is by far the largest
portion of the entire program and is also the only part of the
whole program that is boundary condition dependant. That 1is,
for the simply supported boundary condition, the subroutine will
generate the Galerkin equations using Eqs (2.52) to (2.61); for

the clamped boundary condition, the subroutine uses Eqs (2.64)
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to (2.83).

The subroutine has four nested DO LOOPS. It cycles through
P, q, m, and n and generates the Galerkin equations according to
the Cases of integration outlined in Chapter II. At each step
in the iteration process, the equations are assembled into

matrix format as shown:

u _— g “ rA 4
0o mn
Vo an
w — stiffness matrix <Can =
Ve Emn
wy - L - sGan
7 3
[ rAmn
B
2 = X . . mry
(w or Nl) mass/inertia matrix <Cmn>
E
mn
L 4L9mna
(3.1)

The stiffness matrix is the assemblage of the left hand sides of
the Galerkin equations, and the mass/inertia matrix is the
assemblage of the right hand sides. Both matrices have (5-M-N)
rows and (5°'M'N) columns. Every value of p and q generates a
new row for each of the 5 degrees of freedom, and every value of
m and n generates a new column. wz or ﬁl is the eigenvalue;
depending upon the integer flag input by the user ("1" for
vibration problem, or "2 for buckling problem), the

mass/inertia matrix will contain terms associated with either w2
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or ﬁl' The vector:

{ mnj
is the associated eigenvector. The stiffness and mass/inertia

matrices are then input to the IMSL subroutine DGVCRG which
calculates the eigenvalues and eigenvectors.

The subroutine then determines the fundamental mode shape
along the midlines of the laminate. First it substitutes the
Cmn coefficients from the eigenvector into the deflection

equation, which for both boundary condition considered is:

w(x,y) = g
m=-

The circumferential mode shape 4is determined by calculating

g Cmnsin(mnx/a)sin(nny/b) (3.2)
1 n=1

values of w(a/2,y), and the 1longitudinal mode shape is

determined from w(x,b/2):

w(a/2,y) E g Cmnsin(mﬂ/Z)sin(nny/b)

m¥]1l n=1
(3.3)

w(x,b/2) = g g Cmnsin(mnx/a)sin(nn/Z)
1 n=1

The eigenvalues and mode shape data points are then printed.
(Appendix E contains an example for M=N=2 that shows how the
Galerkin equations are generated to form the stiffness and

mass/inertia matrices.)
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ANALYSIS PERFORMED

Several analytical studies were performed to demonstrate
the results of this thesis. First, the convergence
characteristics of the Galerkin method were demonstrated. Then,
a case comparison study with Donnell cylindrical shell panel
solutions was performed. The effects of transverse shear
deformation, radius of curvature variation, and rotary inertia
were investigated. Finally, the influence of varying the length

to span ratio was studied.

The cylindrical shell panel studied in this thesis is

corstructed of graphite-epoxy material and has the following

material properties:

o)
I

2.10 E+07 psi

1
E2 = 1.40 E+06 psi
G12 = 6.00 E+05 psi
vlz = 0.3
p = 1.42454 E-04 slugs/in° (0.055 1bm/in°)
Two ply layups were investigated: [050/9050]s and

[+4550/-455°]s {both of which for convenience will be referred

to as [0/90]s and [t45]s). The latter ply layup will introduce

more shear stiffness terms into the formulation. Tables 3.1 and
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3.2 contain the stiffness terms calculated from subroutine
"LAMINAT". These stiffness terms will be used in all analysis
throughout this chapter, except for the Donnell comparison
study.

Table 3.1 Panel Stiffness Elements (h = 1.0 in.,[0/90]s)

Extensional Stiffness Elements

Ay, = 11267605.634 Ao = 422535.211 Ay, = 11267605.634

Ajg = 0.0 Ay,g = 0.0 Agg = 600000.0

Ay, = 540000.00 Age = 0.0 Agg = 540000.0

Bending Stiffness Elements

D11 = 1555164.319 012 = 35211.268 D22 = 322769.953

D16 = 0.0 | Dyg = 0.0 D66 = 50000.0

D44 = 41250.0 D45 = 0.0 D55 = 48750.0

Higher Order Stiffness Elements

F11 = 256382.042 F12 = 5281.690 F,p, = 25308.099

F16 = 0.0 Fog = 0.0 Fgg = 7500.0

Fag = 6046.875 F45 = 0.0 F55 = 7453.125

Hll = 46814.088 Hy, = 943.159 H22 = 3487.723

Hig = 0.0 Hyg = 0.0 Hgg = 1339.286

J11 = 9152.886 le = 183.392 J22 = 6828.022

J16 = 0.0 J26 = 0.0 J66 = 260. 417

Units: A, are 1b/in, Dy, are 1b-in, F,; are 1b°-in,

Hij are 1b5-in, and Jij are 1b7-in
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Table

3.2 Panel Stiffness Elements (h = 1.0

in, [2 45]s)

Extensional Stiffness Elements

Ay, = 6445070.423 A, = 5245070.423) A,, = 6445070.423
Ajg = 0.0 Ayg = 0.0 Agg = 5422535.211
Agy = 540000.00 Ay = 0.0 Agg = 540000.0
Bending Stiffness Elements
D,, = 537089.202 D,, = 437089.202 | D,, = 537089.202
D g = 308098.592 D,g = 308088.592 | Dy = 451877.934
Dyq = 45000.0 Dyg = -3750.000 Dgg = 45000.0
Higher Order Stiffness Elements
F,, = 80563.380 F,o, = 65563.380 F,, = 80563.380
F,g = 57768.486 Fog = 57768.486 Feg = 67781.690
Fuq = 6750.0 Fug = -703.125 Fee = 6750.0
H,, = 14386.318 Hyp = 11707.746 Hy,, = 14386.318
H g = 10831.591 Hyog = 10831.591 Hge = 12103.873
Jyq = 2797.340 Jio = 2276.506 Jog = 2797.340
Jig = 2131.216 Jog = 2131.216 Jgg = 2353.531
Units: are 1b-in, F. . are 1b3-in,

Aij are 1lb/in, Dij

1

ij
7

H.. are lbs-in, and Jij are 1b ‘in
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Galerkin Method Converdence.

As Bowlus (3) points out in his thesis, one needs to
determine if the Galerkin technique converges to an exact
answer. This section does not attempt to prove the convergence
of the Galerkin technique. Instead, it shows, as did (24), the
necessary (but not sufficient) condition that <the frequencies
and buckling loads drop by smaller and smaller amounts,
approaching exact values asymptotically, as the values of M and
N are increased. Referring to Eq (2.49), if M=N=2 then each
admissible function is approximated by 4 <terms; if M=N=10,
there are 100 terms, and so on. M=N=10 was set as the maximum
convergence limit due to computer memory limitations and lengthy
CPU run times.

Table 3.3 displays the Galerkin convergence characteristi&s
of the natural frequency for several arbitrary panel
configurations. Table 3.4 shows the convergence for the
critical buckling loads. Finally, Figures 3.1 and 3.2 show
plots of the frequency and buckling convergence tendencies for
h/R=1/5 and b/h=20.0 for [145]s laminates. All data indicates
the natural frequencies tend to converge faster than the
buckling loads. In other words, vibration problems need 1lower
values of M and N than buckling problems to achieve converged
solutions.

The difference in buckling load and natural frequency

convergence tendencies is explained by the mode shape of the




In general,

deformed panel.

for both the frequency and buckling

problems, the longitudinal mode shape behaves like that of a
flat plate: usually one full sine wave or one half sine wave.
Table 3.3 Galerkin Convergence
Fundamental Frequency (rad/sec)
b = 10.0 in b =15.0 in b = 20.0 in
M =N w Decrease w Decrease w Decrease
2 30840.4) -—---~ 20320.5) ---- 15647.9| ----
4 27738.5] 10.1% 16546.3| 18.6% 11866.7| 24.2%
6 27608.4] 0.47% 16383.5 0.99% 11711.7 1.31%
8 27588.1 0.04% 16342.7 0.25% 11665.7 0.39%
Clamped Boundary Condition
[:45]s, R =5.0in, h = 1.0 in,a/b=1

w(x,b/2) in Eq (3.3) takes on this shape as x varies from 0 to a.

The circumferential mode shape, w(a/2,y), behaves

differently for the two problems. For +vibration, there is

generally 1.0 to 1.5 full sine waves in the circumferential

direction from y = 0 to y = b. Interestingly, the mode shape is

independent of the degree of accuracy chosen: =N=2 generally
produces the same shape as M=N=10.

On the other hand, the buckling mode shape depends a great
trends can be

deal upon the degree of accuracy. The deneral

explained by an example. Refer to table 3.4,

clamped boundary




condition, R = 5§ in, b = 20 in. M=N=2 generates ﬁ1=1388936.8

1b/in. The circumferential mode shape is a single half sine

B A

wave. For M=N=10, ﬁ1=309620.0 1b/in (4.5 times lower), and

there are six full sine waves in the circumferential direction.

Table 3.4 Galerkin Convergence
Critical Bucklin Load (1lb/in)

b = 10.0 in b = 30.0 in
M=N ﬁl Decrease ﬁl Decrease
2 542522.3 | ~~~--- 800558.9 | ~--——-
4 380559.9 29.9% 603021.4 24.7%
6 360626.9 5.2% 382408.0 36.6%
8 359194.1 0.4% 329291.8 13.9%
10 358660. 4 0.1% 305460.9 7.2%

Simply supported boundary condition
[t45]s. h=1.0 in,a/b=1,R=5.0 in

b = 20.0 in b = 30.0 in
M=N ﬁl Decrease N, Decrease
2 1388936.8 | -—---- 1720640.7 | -=-=-—-
4 488639. 3 64.8% 764410.9 55.6%
6 347096.8 29.0% 449037.7 41.3%
8 311436.4 10. 3% 340343.2 24.2%
10 309620.0 0.6% 304491.6 10.5%

Clamped boundary condition
(i45]s,h=1.0 in, a/b = 1, R=5.0 in
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Bushnell (8) found this same type of mode shape behavior for
axially compressed cylindrical shells. It is clear that more
terms are needed to accurately model the buckling mode shape,
which explains the slower convergence tendencies for certain
deometries.

All panel configurations used in this thesis displayed
excellent frequency and buckling load convergence towards exact
answers. This data does not prove convergence, but it
definitely demonstrates convergence tendencies. The drawback
with the Galerkin technique is that in order to obtain extremely
accurate answers that require M and N be greater than 10, a
great deal of computer resources is required. This higher
accuracy requirement has more application with the buckling
loads, since they don’t converge as fast as the natural

frequencies.

Reddy and Liu (16) examined laminated circular cylindrical
shell panels using Donnell theory with parabolic transverse
shear modeling. The equations of motion for the circular
cylindrical shell panel, Eq (2.33), will degenerate down to the
Donnell equations of motion by dropping the appropriate higher
order terms in Eq (2.33a) as previously discussed in Chapter II.

Reddy found an exact solution to the equations of motion for
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simply supported boundary conditions using Navier’s method. The

Navier solution exists only if <the following stiffnesses are
equal to zero: Ai6 = Die = Fi6 = Hi6 =0 (1 =1,2) and A45 =
045 = F45 = 0. This restricts his analysis to panels with
[0/90]s ply layups.

Reddy used different engineering constants in his work than

those used in this thesis. The following values were used in

the comparison:

E1 = 2.1 E+07 psi

E2 = 8.4 E+05 psi
G12 = 4.2 E+05 psi
€13 = G2
623 = 1.68 E+05 psi
Yig T 0.25

p =10 s1ugs/in3 (Note an extremely large value)

These numbers give the 1.0 in. thick cylindrical shell panel the
stiffness terms shown in Table 3.5. Table 3.6 compares Reddy’s
answers using the Navier solution with those of this thesis

using the Galerkin technique. Note that Donnell theory limits

the maximum bh/R ratio to be about 1/50, as discussed in Chapter

II.




Table 3.5 Stiffness Elements for the Reddy Comparison
(h = 1.0 in, [0/90]5)

Extensional Stiffness Elements
11 = 10947368. 421 Ay, = 210526.316 Ayy = 10947368. 421
Ajg = 0.0 Ayg = 0.0 Ags = 420000.0
Mgy = 284000. 00 Ay = 0.0 Age = 294000.0
Bending Stiffness Elements
D11 = 1543859.649 D12 = 17543.860 D22 = 280701.754
D, = 0.0 D26 = 0.0 Dgg = 35000.0
D44 = 16625.0 D45 = 0.0 D55 = 32375.0
Higher Order Stiffness Elements
Fll = 255263.158 F12 = 2631.579 F22 = 18421.053
F16 = 0.0 F26 = 0.0 FGS = 5250.0
F44 = 2198.438 F45 = 0.0 F55 = 5151.563
Hll = 46640.038 Hi, = 469.825 Hy,, = 2232.143
HIS = 0.0 Hyg = 0.0 Hgg = 937.50
J11 = 9120.294 le = 91.374 J22 = 382.630
J16 = 0.0 st = 0.0 J66 = 182.292
Units: Aij are 1b/in, Dij are 1b-in, Fij are 1b3'in,
Hij are lbs'in, and Jij are 1b7'in

84




Table 3.6 Donnell Frequency Comparison

Fundamental Frequency (rad/sec)

a =b = 100.0 in.
R (in) —%— Navier Galerkin Error (%)
500.0 . 002 1.86602 1.8697 + .2
1000.0 . 001 1.52416 1.52458 + .03
2000.0 . 0005 1.42519 1.42529 + .007
5000.0 . 0002 1.39585 1.39623 + .03
a =b =10.0 in.
R (in) -%— Navier Galerkin Error (%)
50.0 .02 108. 4237 108.6415 + .2
100.0 .01 108.0571 108. 109 + .05
200.0 . 005 107.9655 107.9753 + .009
500.0 . 002 107.9655 107.9379 - .03

Simply Supported Boundary Condition
[0/90]8, h =1.0 in.

Table 3.6 validates the accuracy of the higher order theory as

it applies to Donnell type problems. The excellent agreement
between the higher order theory and the Donnell equations is
attributed to the h/R region involved. As explained earlier,

since the maximum h/R value is 1/50, the higher order terms in

Eq (2.33a) approach zero; the higher order equations of motion

reduce to Reddy’s Donnell equations. Table 3.6 also shows

the

Galerkin technique to be an excellent approximation method.




-

Iransverse Shear Deformatiop Analysis.

This section will compare the parabolic transverse shear
model used in this thesis with the Mindlin transverse shear
model and the classical Kirchhoff model, which doesn’t
incorporate transverse shear. This section is devoted to flat
plate comparisons, R -+ o,

Classical plate theory with no modeling of transverse shear
makes the plate too stiff; conseguently, the theory
overpredicts the natural frequencies and buckling loads.
Therefore, plates modeled with transverse shear will have lower
frequencies and buckling loads than Classical plates.
Furthermore, the more accurate parabolic transverse shear model
should have lower frequencies and buckling 1loads than the
Mindlin model. These statements are verified by comparing the
parabolic solutions with Bowlus’ (3),(4) and Palardy’s (13)
Mindlin solutions and Jones’ (8) Classical solutions. Bowlus
used the Galerkin method, and Palardy used the Levy method to
arrive at their flat plate answers. Jones has closed form
solutions for the buckling 1loads and natural frequencies of
simply supported specially orthotropic laminated plates using
Classical thin plate theory, ie, the Kirchhoff assumptions. The
fundamental frequency for a classical thin plate with a ply

layup of (0/90]s is:
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2 0.5
= 4 2,2 4
o= 5 [Dyy78% + 20Dy, + 2Dgg)/(aH%) + Dyy ] (3.4)

If the aspect ratio, a/b, is greater than 2.5, the critical

buckling load for this laminate is:

2
§ . an 0.5
Ny =52 [D12 *+ 2Dgg + (Dy4Dy5) ] (3.5)

The bending stiffness terms in these two equations are obtained
from Table 3.1.

Table 3.7 compares the natural frequencies of the parabolic
and Mindlin transverse shear models with the Classical model
using Eq (3.4). Table 3.8 compares the parabolic buckling loads
with the classical buckling loads using Eq (3.5). Both tables

display the expected results, but with one exception;

Table 3.7 Classical Frequency Comparison

Fundamental Frequency (rad/sec)

a (in) Parabolic Mindlin Classical Classical Error
5.0 32459.7 33210.67 48481. 45 + 49.3 %
10.0 10519.85 10657. 15 12120.36 + 15.2 %
20.0 2910.64 2913.32 3030.09 + 4.1 %
30.0 1322.20 1322. 56 1346.71 + 1.9 %
40.0 749.66 749. 47 757.52 +1.0%
50.0 481.57 483.29 484.81 + 0.7 %

Simply Supported Boundary Condition
R = oo, [O/GO]S, h=10in, a/b = 1




Teble 3.8 Classical Buckling Comparison

Critical Buckling Load (1b/in)

a/b = 3

b (in) Parabolic Classical Error
5.0 432811. 14 666161. 06 + 53.9 %
10.0 146354.07 166540. 27 + 13.8 %
20.0 40243.73 41635.07 + 3.5 %
30.0 18226.55 18504. 47 + 1.5%
40.0 10321.34 10408.77 + 0.8 %
50.0 6626. 29 6661.61 + 0.5 %
Simply Supported Boundary Condition
R+ o, [0/90]5, h 1.0 in,
Ironically, there is almost a perfect match between

frequencies for the parabolic

and Mindlin cases.

This

probably because the simply supported boundary condition is

“ideal"”.

fact, for the [0/90]s ply layup, the convergence is

for M = N = 2.

transverse

shear models

approach the

classical

There are very good convergence characteristics;
immediate
For both the fregquency and buckling cases,

solutions

asymptotically at a/h (or b/h) values of 40.0 to 50.0.

Figures 3.3 and 3.4.
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Tables 3.9 and 3.10 compare parabolic transverse shear
frequency solutions with those of Mindlin theory for (145]s
laminates. Table 3.9, the simply supported case, shows the same

trend as before; parabolic and Mindlin solutions are virtually

equal.

Table 3.9 Parabolic vs Mindlin Shear Models
Simply Supported Boundary Condition

Fundamental Frequency {(rad/sec)

M =N Parabolic Mindlin Error (%)
2 3656. 39 3643.01 - .37
4 3596.80 3573.37 - .65
6 3571.40 3539.91 - .88
8 3557.18 3520.58 -1.03

R+ o (% 45]_, h =1.0 in, a=b=20.0 in
S

The expected departure of the Mindlin theory from the parabolic
theory is evident for the clamped boundary condition in Table

3.10. For eeach value of M and N, the parabolic model produces

more accurate frequencies.




Table 3.10 Parabolic vs Mindlin Shear Models
Clamped Boundary Condition

Fundamental Frequency (rad/sec)

[0/90]s
M =N Parabolic Mindlin Error (%)
2 6609. 30 7869.20 + 19.0
6 5349.30 5698. 35 + 6.5
8 5333.73 5644.82 + 5.8
[* 45]s
M =N Parabolic Mindlin Error (%)
2 6537.40 7705.62 + 17.9
6 5098.60 5542. 46 + 8.7
8 5058.90 5231.92 + 3.4
R+® h=1.0in, a=b = 20.0
Radius of Curvature Analysis.

In this section the effects of varying the radius of
curvature, R, (or, equivalently, h/R) is examined. As noted in
Chapter 1I, for a flat plate h/R = 0, and membrane completely

decouples from bending. The membrane Galerkin equations, those
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associated with u, and v,» are coupled together, but as a whole

are decoupled from the bending Galerkin equations: those

associated with w, v and v_. As h/R 1is increased from O

x’ y

up to the maximum value of 1/5, membrane and bending couple
together, the cylindrical panel becomes deeper and stiffer, and
the natural <frequencies and buckling loads increase. The

following specific h/R ratios are investigated:

[ 0: Flat Plate

h 4 1/50: Donnell Equation Maximum Limit
8- =

1/20: Intermediate Value

. 1/5: Maximum Limit of Higher Order Theory

The figures in this section are plots of w or ﬁl vs. b/h.
The panels are square, a/b = 1, and M = N =6 is used as the
degree of accuracy. (The two buckling load plots for h/R = 1/5
required M = N = 8 for b/h values of 5, 10, and 15 and M=N=10
for b/h values of 20 and 30 to obtain proper convergence.) The
circumferential length to thickness ratio (b/h) is varied from
5.0 to 50.0.

The four fundamental frequency plots are shown in Figures
3.5 through 3.8. All curves follow the same basic trends: the
frequencies are high ‘at b/h = 5.0 and then decrease as the panel
gets thinner, approaching constant values asymptotically at b/h
values of 40 to 50. Also, as expected, the frequencies increase
due to membrane and bending coupling as h/R is increased from O
to 1/5. The effect of this coupling is shown in Table 3.11 in

which panel to flat plate frequency comparisons are made.
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Table 3.11 Frequency Coupling Effects

w/wp
[0/90]s [.+.45]s
h/R b/h = 10 b/h = 30 b/h = 10 b/h = 30
1/5 1.54 4.52 2.02 4.37
1/20 1.04 2.65 1.14 2.48

Simply Supported Boundary Conditions

[0/90]s [t45]s
h/R b/h = 10 b/h = 30 b/h = 10 b/h = 30
1/5 1.27 2.67 1.78 3.37
1/20 1.02 1.54 1.10 2.05

Clamped Boundary Conditions

wp = flat plate natural frequency

h=1.0 in, a/b = 1

With few exceptions, the [145]s laminates gdenerally yield
higher frequencies than the [0/90]s laminates for both boundary
conditions considered. The [t45]s laminates have inplane shear
stiffness terms (D16’ D26’ FIS’ F26’ H16’ st, J16’ J26) that
account for these higher frequencies. (See Table 3.1 and 3.2.)
Referring to Figures 3.5 and 3.6, for the simply supported
boundary condition, the difference in frequency for the two

laminates gets greater as the curvature increases. For h/R = 0,

the frequencies are about 20%¥ higher for the [1'45]s laminate for
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all b/h values. For h/R = 1/50, the frequencies are about 20%
higher at b/h = 5§ and are about 50% higher at b/h = 50. For h/R
= 1720, the frequencies vary from 20% higher to 80% higher, and
for h/R = 1/5 the frequencies are about 25% higher for all b/h
values.

For the clamped boundary condition, the [0/90]s laminate
yields higher frequencies than the [145)s laminate for flat
plates (h/R=0). But, as the curvature increases, the
frequencies of the [245]s laminate become gfeater than those of
the [0/90]s laminate. (See Figures 3.7 and 3.8.) For h/R=1/50,
the frequencies for both laminates are roughly equal at b/h=5,
but the frequencies are about 30% higher for the (t45]s laminate
at b/h=50. For h/R = 1/20 the frequencies vary from roughly 6%
higher to 20% higher, and for h/R = 1/5 the frequencies are
roughly 30% higher.

Table 3.11 displays a consistent trend mentioned in the
previous two paragraphs; in general, as the curvature of the
panel increases, the membrane and bending coupling has a greater
effect at larger b/h values. Larger b/h values physically
equate to greater arclength around the panel. In fact, for h/R
= 1/5 at b/h = 30 the cylindrical panel is almost a complete
cylinder.

For the same ply layup, the frequencies for the clamped
boundary condition are higher than those for the simply
supported boundary condition. For the [0/90]s laminate the

difference is quite dramatic. For h/R values of 0 and 1/50, the
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frequencies are 20% higher at b/h = 5 and over 100% higher at
b/h =40 to 50. For h/R = 1/20 the frequencies are roughly 30%
higher for all b/h values, and for h/R = 1/5 the frequencies are
roughly 20% higher. Figures 3.6 and 3.8 show the same trend for
the [145]s laminate, but the increases in frequency for the
clamped boundary condition over the simply supported boundary
condition are not quite as large as they were for the [0/90]3.

Figures 3.9 and 3.10 show the two buckling plots done for
the [245]S laminate. The same trends of the frequency plots are
evident; high buckling loads at small b/h values, decreasing
asymptotically to constant loads at b/h values of 40 to 50.
There are very significant increases in the buckling loads as
h/R is increased, and as Table 3.12 shows, the membrane and
bending coupling has a greater effect as the circumferential
distance around the panel increases.

The [14515 laminate yields higher buckling 1loads for the
clamped boundary condition than for <the simply supported
boundary condition for h/R values of 0, 1/50, and 1/20. The
buckling loads are roughly the same for both boundary conditions
for h/R = 1/5. Similarly, as Table 3.13 indicates, the [0/90]s
laminate yields buckling loads for the <clamped boundary
condition that are upwards of 50% higher than the buckling loads

for the simply supported boundary condition.
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Table 3.12 Buckling Load Coupling Effects

Nl/Nlp
Simply Supported Clamped
h/R b/h = 10 bs/h = 30 b/h = 10 b/h = 30
1/5 1.63 9.35 1.43 5.81
1720 1.08 3.45 1.06 2.22
N, = flat plate buckling load

1
p
h =1.0 in, a/b = 1, [145]s

Table 3.13 Buckling Loads for [0/90]s Laminates

Critical Buckling Load (1b/in)

b/h Simply Supported Clamped
5 392281.3 454819.2

20 104118.3 185617.0
50 94020.0 134723.6

R = 20.0 in, h = 1.0 in, a/b =

113
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Another feature of this thesis is the incorporation of
rotary inertia into the vibration problem. Referring to Eags

(2.32) and (2.33), the following accelerations contribute to the

rotary inertia: w,x , w’xx , w,y s w,yy s wx s wx,x s Wy ’

ay,y. If rotary inertia is eliminated, the only inertia term
left is Il; on the right hand side of the equation of motion for
w in Eq (2.33). Likewise, the Galerkin equations all reduce to
a single term on the right hand sides. The end result is a much
less populated mass/inertia matrix in Eq (3.1).

Bowlus (4) and Palardy (13) both found Rotary inertia to be
negligible for the vibration of flat plates modeled with Mindlin
transverse shear theory. The results are the same for this
thesis. Several cases were run for both simply supported and
clamped boundary conditions, which included various h/R ratios,
ranging from O (flat plate) to 1/5, and various a/h (b/h)
ratios. The results were all the same. With rotary inertia
removed, the fundamental frequencies are only about 0.5% higher.
The overall conclusion is rotary inertia has a negligible effect
for first mode analysis. It does become more important for the

higher modes, however.
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The transverse normal stress, ©,» was set equal to zero
under the assumptions of plain stress constitutive relations.
As explained in Chapter II, this is a good assumption for most
geometries, and is therefore used quite extensively in
plate/panel analyses. Some of the geometries analyzed in the
previous sections “"stretch" the accuracy limitations of the o

z
assumption and warrant specific comments. First, the flat plate

is examined.

For flat plates, the validity of assuming °, = 0 is
dependant upon the minimum value of a/h {(or b/h) chosen. Koiter
(10) states that the transverse normal stress is in general of
order h2/L2 times the bending stress, and transverse shear
strain is h/L times the bending stress, where L is the smallest
wavelength of the deformation pattern on the mid surface. For

rlates, L is almost always equal to the smallest dimension (a

or b). Therefore, for the plate:

2, 2
o x h“/a” (o_,o0. )
2 x v (3.86)

sz’Tyz = h/a (ax,ay)

A rule of thumb in classical plate theories is the minimum a/h
ratio is 10, or o, x 0.01(ax,0y). References (15), (17), (3),

and this author used lower values. Referring to the previous
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gections, the minimum a/h (b/h) ratio used is 5; az is roughly

4% of (ax,ay) and 20% of (T ), and therefore becomes

» T
X2’ yz
important for these very thick plate configurations.

Shells incorporate the o, approximations with respect to
the flat plate, plus an additional accuracy consideration. As
Koiter (10) states, the transverse normal stress is of order h/R

times the bending stress. For the shell panel:

o_=x h/R (ax,ay)

«

(3.7)
sz,'ryz -~ h/L (oxxoy)
When combined together, these equations give:
oz >~ L/R (sz’Tyz) (3.8)

By the mere fact the maximum h/R ratio used in this thesis is
1/5, o, becomes important because it is in reality roughly 20%
of the bending stresses. For the smaller h/R ratios used, the
o effect is negligible, except for the regions of small a/h as
explained above.

Using Eq (3.8), o, may be further examined for the h/R
ratio of 1/5. L is not always equal to the dimension of the
shell panel; it varies with b/h, and is determined from the
mode shape in Eq (3.3). As discussed before, the 1longitudinal
mode shape generally behaves like that of a flat plate: usually
one full sine wave or one half sine wave. The circumferential
mode shape varies, depending on the geometry and on the problem
(buckling or vibration).

The panel generally buckles into six sine waves in the

116




circumferential direction; Lx1/6b and L/Rx1/30b for h/R=1/5.

From Eq (3.8), o_ is roughly 15% of (rx

2 ’Tyz) at b/h = 5, where

Z
the transverse shear is very prominent. o¢o_ = (7 ’Tyz) at b/h =

2 Xz
30, but the transverse shear here is very low; so, the effect
is negligible.

For the vibration problem involving h/R = 1/5, there is in
general only 1 to 1.5 full sine waves in the circumferential
direction; L/R®2/15b. o, becomes important at b/h=5 because it
is roughly 66% of the transverse shear in a region where the
shear is very prominent.

The overall conclusion of this section is o, is important
for h/R values of 1/5 and a/h (b/h) values of 5, especially for
the vibration problem. The overall trends displayed by the
data, however, are accurate. Figures 3.3 through 3.10 display
logical and consistent trends for these configurations.

Whitney (24) presents a method that includes oy effects and
would improve the accuracy for these particular geometries. In
his model, the transverse displace;ent w is a linear function of
z and has the form: w(x,y,2) = wo(x,y)'+ z¢(x,y), where wo(x,y)
is the mid surface transverse displacement, and (x,y) is an
additional degree of freedom that must be included in the

constitutive relations and equations and motion. This

application would be an interesting follow-on to this thesis.




IV. CONCLUSIONS

A theory applicable to symmetrically laminated anisotropic
circular cylindrical shell panels of arbitrary geometries has
been developed. The theory includes a through the thickness
parabolic transverse shear stress and strain distribution and is
valid for 0 = h/R = 1/5. Analytical solutions for the
fundamental frequencies, critical buckling loads, and the
corresponding mode shapes are obtained using the Galerkin
technique. Simply supported and clamped boundary conditions
were investigated. Based upon the analysis, the following
conclusions are presented:

The strain displacement relations are very accurate for
0=h/R<1/10. The results were verified against the Donneli
solutions for 0<h/R<1/50. Since there is no 2/R variation in
the transverse shear strains, and since g and €, are assumed
equal to zero, some precision is lost for h/R wvalues of 1/5.
However, the generated results show very logical and consistent
trends at this h/R limit, and consequently the theory here is
assumed to be a very good approximation.

The Galerkin technique proved to be an excellent method for
solving the five coupled partial differential equations of
motion and boundary conditions. The method converged to exact
frequencies very quickly for all geometries. Convergence was

slower for the buckling problem, particularly for the clamped
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boundary condition at h/R = 1/5 and high b/h ratios. The method

still works for these cases, but at the cost of a great deal of
computer time. Another benefit of the Galerkin technique is
that it may be applied to any desired ply layup and more types
of boundary conditions.

Parabolic transverse shear effects were measured up against
classical solutions for simply supported flat plates with
symmetric cross ply laminates. At a/h = 5 the frequency
obtained using transverse shear was 49% lower than the classical
frequency. At a/h = 40 the difference was only 1%. For aspect
ratios of 3 (a/b = 3), the parabolic shear buckling load was 54%
lower than the classical buckling load at b/h = 5 and 0.8% lower
at b/h = 50.

There is little difference between the parabolic transverse
shear model and the Reissner-Mindlin model for simply supported
flat plates. The parabolic model is more accurate than the
latter for clamped plates; Mindlin theory overpredicts the
frequencies by 15-20% for M=N=2 and by 3-5% for M=N=8. The
margin of error decreases as the number of terms for each degree
of freedom increases. |

Transverse shear effects consistently became negligible as
a/h (b/h) approached 40 to 50 for all plate and panel
configurations.

Increasing h/R from O to 1/5 increased membrane and bending
coupling , and drove the frequencies and buckling loads to

higher values for both boundary conditions. For both boundary
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conditions, the [:':45]s laminates yielded higher fregquencies than
the [0/90]s laminates, due to the additional inplane and
transverse shear terms in the former. Both (i45]s and [0/90]s
laminates yielded higher frequencies for clamped boundary
conditions than for simply supported bqundary conditions.

Buckling loads behaved differently. The [t45]s laminates
yielded higher buckling loads than the [0/90]s laminate for
simply supported boundary conditions, but (0/90]s buckling loads
are higher than [i45]s buckling ‘loads for clamped boundary
conditions. The [145]s laminates have slightly higher buckling
loads for clamped vs simply supported boundary conditions,
except at h/R = 1/5 where the buckling loads for both boundary
conditions are roughly equal. Finally, [0/90]s laminates have
much higher buckling loads for clamped boundary conditions than
simply supported boundary conditions.

Rotary inertia effects were negligible for all panel
configurations examined. Fundamental frequencies were only

about 0.5% higher with rotary inertia removed.




Appendix A: Transverse Shear and Maximum
h/R Assumptions

This appendix explains in detail the assumptions made about
the transverse shear strains, Yyg and Y gn’ discussed in Chapter
II. By examining the work of Dennis (8), a measure of the error
introduced by assuming no z/R variation with respect to the
shear model is developed. The appendix focuses on ryz’ but it
should be understood that similar conclusions for L apply.

This thesis assumes 2z/R = O for the transverse shear

strains. It was shown from Eq (2.2) this resulted in

= - —
Yyp = Moy Tt Vg (A. 1)

Substituting the displacement relations in Eq (2.1) into Eaq

(A.1) gives:
z Vo z 22 23 Vo
”yzzw’y'[l*'R]R’ ¥ " ®%  ®R%*T® ‘
2
wy + Zz¢2 + 3z 92 (A.2)
Since z/R = 0, Eq (A.2) reduces to:
Y. =W, +w_+ 2z¢, + 3z% (A.3)
yz 4 y 2 2 )

Evaluating Eq (A.3) at z = th/2 and setting the two equations

equal to zero to satisfy the boundary conditions gives:

121




E!l--l!-I-llllIllllIllllllllIIllIlllllIllIllIlIllllllIl-III-----r——

2 -
wy + w,y + h¢2 + 3/4h 92 =0

26 -
Wy + Yoy h¢2 + 3/4h 62 =0

from which the following results:
¢2 =0

©,

2
4/3h (wy + w,y)

By performing similar operations with yxz’ similar expressions

are obtained for ¢1 and € By substituting ¢2, 62, ¢1, and 61

1
into Eq (2.1), the displacement field in Eq (2.3) is obtained.
Of course, the approximation z/R * O for the transverse shear
limits the maximum value of h/R for which the strain
displacement relations in Eq (2.2) are valid. By examining
reference (8), an accurate value for this maximum h/R limit may
be obtained.

Dennis assumed a 4th order displacement field rather than a
3rd order field. For the circular cylindrical shell panel, this
field is:

vy - 2 3 4
4= u_ 4+ zwx + 2 ¢1 + z 71 + 2 91

- 2 2 3 4
v = [1'+-TTJVO + zwy + z ¢2 + 2 72 + 3z 62
W =W (A.4)
Inserting these relations into Eq (2.2) without making the

assumption z/R & 0 gives an exact expression for ryz:

2 3 4
_ 1 2z 2 _ 2z 3 _ 3z
sz = —I————E—[Wy + [22 - —§—]¢2 + [32 —ﬁ—]yz + [4z —ﬁ—]ez
 —
R
+ w,y] (A.5)
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Following the similar procedure, Eq (A.5) is evaluated at 2z =

*h/2 and set equal to zero. Adding the two resulting equations

gives:
3
h 3 -
2oy - 2R T2 * %2 70
from which:
¢2 =0
_ 1
€y = IR 2

Inserting these values into Eq (A.5) and again evaluating at z =

*h/2 gives:
2 2
PSS S 3n°(, _ _h®
Yye =0 F + _h [w'y TV YT [1 2]72] (A.6)
1 2 = 8R
2R
from which:
2
h 4
1 - -——]r = —5(w,, ~ Vv ) (A.7)
[ gré) 2 ap? Y Y
If h/R = 1/5, the underlined term in Eq (A.7} = 0.005;
therefore,
~ 4 - b 1

Inserting the values of ¢2, 92, and 72 into Eq (A.4), Dennis
obtains exactly the same displacement field as in Eq (2.3). In
conclusion, Dennis’ transverse shear model is accurate up to h/R

= 1/5 using the relation:

— 1 _ v
g b
x [1 --%%][w,y —-%%] + v, (A.8)
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What is the h/R limit for sz used in this thesis, that is Eq

(A.1) ? Manipulating Eq (A.8) gives:

= -y - 2 -
Yya = Wy E t Ve R [w’y R ]
or
- - 2 - Y
yyzz - ryzt R [w,y R ] (A-9)
where
yyzz = the exact value of sz in Eq (A.8) -
YYZ, = the approximate value of ¥y, 1D Eq (A.1)
and

- —%—[w,y - ~§—] = the error

Substituting the displacement field in Eq (2.3) 1into Eq (A.9)
gives:
2 2 4 4 : T

- 2 2 z2_ _ _4z v 2 4z
Yve, = Vyz * ( g2 RS]VO ¥ [ ) 3h2R2]*y ( E * 3hsz}"’y

For z = + h/2 and h/R = 1/5, the shear becomes:

0.11 L =
v, * 0.0067¢, - 0.103w,

b =7 +
vz, Xz, R

For a 1.0 in thick laminate and a radius of curvature of 5.0 in,

the final result is:

szz = sz‘ + 0.022v  + 0.0067Wy - O.103w,y
This is a small error, especially since this thesis is concerned
with small deflection theory with rotations of around 5.0 .
Therefore, using an h/R limit of 1/5 is a good approximation for

the transverse shear expression in Eq (A.1).




Appendix B: Integration By Parts

This appendix briefly summarizes the approach taken for the
integration by parts during the development of the kinetic,
strain, and potential energies. This development parallels that
presented by Shames and Dym (20).

For two functions, G(x,y) and H(x,y), the following scheme

applies for the integration by parts of double integrals:

b ra b X=a b ra
J I GH,xdxdy GH dy - J I HG,xdxdy
0 0 0 O

(0] x=0

rb b ra
= | [eta,v)Hca, ) - G(o,7)H(0, 3]y -I jHG,xdxdy

) 0 o

(B.1)
and

y=b b ra
dx - J I HG,ydxdy

y=0 0

b ca ra
I J GH, dxdy GH
y J
0O O 0

ra b a
= [G(x,b)H(x,b) - G(x,O)H(x,O)]dx —I J HG, dxdy

0 00
(B.2)

The line integrals represent the boundary conditions along
the edges of the panel. Line integrals of the following form
may be reduced further to yield boundary conditions at the four

corners of the laminate:




a Y= a .,
L I GH, dx = I G(x,b)H(x,b), - G(x,0)H(x,0), ]dx
x y=0 \ X X,
0 0
y=b lx=a a =b
= GH - I HG,x dx
y=0 |x=0 0 y=0

"

G(a,b)H(e,b) - G(a,0)H(a,0) - G(O,b)H(O0,b) +

a
G(0,0)H(0,0) —J [H(x,b)G(x,b),x - H(x,O)G(x,O),x]dx

0
(B.3)
and
b X=a b
J G, | v = I (G(a,y)H(a,y),y - G(0,¥)H(0,¥), Jdy
0 - 0
x=a Jy=b b X=a
= GH - I HG, dy
x=0 Jy=0 0 y x=0

= G(a,b)H(a,b) - G(a,0)H(a,0) - G(O,b)H(O0,b) +

b
G(0, 0)H(0, 0) —JO[H(a,y)ma,y),y - H(o,y)G<o,y>,y]dy

(B.4)
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Appendix C: Integration Formulas used in

Generating Galerkin Equations

MACSYMA (25) was used to integrate the equations of motion
and boundary conditions to generate the Galerkin equations for
the simply supported and clamped boundary conditions. Intrinsic
in MACSYMA’s artificial intelligence logic is the capability to
symbolically integrate trigonometric functions.

MACSYMA evaluated the following integrals, taken from (2),

to generate the Galerkin equations:

When m = p:

a
J cos(mnx/a)cos(pnx/a)dx = a/2 (C.1)

0

ra
sin{(mnx/a)sin(pnx/a)dx = a/2 (C.2)

Y0

ra
sin(mnx/a)cos{prx/a)dx = O (C.3)

"0
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When m # p:

ra
cos(mmx/a)cos(pnx/a)dx = 0O (C.4)
Y0
ra
sin(mx/a)sin(pnx/a)dx = O (C.5)
"0
a
J sin(mnrx/a)cos(pnx/a)dx
0
O for (m+p) an even integer
———%22—5— for (m+p) an odd integer
n(m - p")
(C.6)
Similarly, for
a
I sin(pnx/a)cos(mnx/a)dx
0
0 for (m+p) an even integer
gap 5 for (m+p) an odd integer
n(p“- m”)
(C.7)
These same integrals apply for n and q, when the

independent variable is y, and the integration is from O to b.
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Appendix D: Computer Programs

This appendix contains the computer listings. Program
“MAINTHESIS"”, the complete code for simply supported boundary
conditions, is listed first. This is followed by the code used

for clamped boundary conditions.
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*k¥xkk%x Simply Supported Boundary Condition *dokxkxx

PROGRAM MAINTHESIS

. —  — ——— ————— . ———— ——— ———— — ——— . Yo o — ——— — —— " ———————————— ————

CAPT PETE LINNEMANN

GA-88D

THE DETERMINATION OF THE FUNDAMENTAL NATURAL FREQUENCY AND

CRITICAL BUCKLING LOAD OF AN ANISOTROPIC LAMINATED CIRCULAR
CYLINDRICAL SHELL PANEL INCLUDING THE EFFECTS OF PARABOLIC

TRANSVERSE SHEAR DEFORMATION AND ROTARY INERTIA.

THESIS ADVISOR: DR ANTHONY FALAZATTO

INITIAL PROGRAMMING DATE: 26 JUL 88

————————— — . —— ——— ——— —— ——— — — — ———— P~ ——— T —_——— o —— —————— — ————— — " ——

INITIALIZATION

DOUBLE PRECISION A,B,R,H,PI,Al11,A12,A22,A16, A26, A66, A44, A45,
1A55,D11,D12,D22,D16,D26,D66, D44, D45, D55,F11,F12,F22,F16, F26,
2F66,F44,F45,F55,H11,H12,H22,H16, H26,H66,J11,J12,J22, J16, J26,

3J66, TPLY, THETA(100),E1,E2,G12,V12,V21,G13,G23, STIFF(500, 500) .

4, MASS (500, 500), BETA(500), RHO, REVEC(100)

DOUBLE COMPLEX ALPHA(500),EVAL(500),EVEC(500,500)
WORKSPACE ALLOCATION FOR IMSL

COMMON / WORKSP / RWKSP

REAL RWKSP(1503026)

CALL IWKIN(1503026)

OPEN (UNIT
OPEN (UNIT

1, FILE
2, FILE

’MAININ.’, STATUS = *OLD’)
*MAINOUT.’, STATUS = °NEW’)

IS THIS A VIBRATION PROBLEM OR A BUCKLING PROBLEM ?
NBUCVIB = 1; VIBRATION. NBUCVIB = 2; BUCKLING.

READ(1,5) NBUCVIB

P — ———— T —— — —— — — — — —— . —— T — T ——— T~ —— —_—— ——————— o ————— v~ — = -

READ SHELL PANEL DIMENSIONS AND LAMINATE DATA
DIMENSIONAL DATA
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C
C
C
c

O O aoaan

LENGTH IN THE X DIRECTION (LONGITUDINAL AXIS)
READ(1,1) A

LENGTH IN THE Y DIRECTION (CIRCUMFERENCIAL AXIS)
READ(1,1) B

RADIUS OF CURVATURE

READ(1,1) R

LAMINATE THICKNESS

READ(1,1) H

PI = 3.141592653589793

LENGTH TO SPAN RATIO AND THICKNESS RATIO

AOVERB = A/B
HOVERR = H/R
AOVERH = A/H
BOVERH = B/H

LAMINATE DATA

NUMBER OF PLYS IN THE LAMINATE

READ(1,5) NPLYS

THICKNESS OF EACH PLY IN THE LAMINATE

TPLY = H / NPLYS

ORIENTATION ANGLE OF EACH PLY IN THE LAMINATE
DO 100 I = 1,NPLYS

READ(1,1) THETA(I)

100 CONTINUE

eXoNoRoX®)

MATERIAL PROPERTIES OF EACH PLY

READ(1,1) E1l

READ(1,1) E2

READ(1,1) G12

READ(1,1) Vi2

READ(1,3) RHO

V21 = V12 x E2 / El

FOR THIS THESIS, G13 AND G23 WILL HAVE THE FOLLOWING VALUES:
G13 = G12

G23 = 0.8 x G12

—— L — — —————— — — — —— — — . . T ————— ———— — ] ——— ———— . {———— T —— " o S T~ o

WRITE SHELL PANEL DIMENSIONS AND LAMINATE DATA

WRITE(2, 10)

IF(NBUCVIB .EQ. 1) THEN
WRITE (2,11)

ELSE

WRITE (2,12)

ENDIF

WRITE(2, 13)

WRITE(Z2, 15)

WRITE(2,17) A,B, AOVERB
WRITE(Z2, 18) H, AOVERH, BOVERH
WRITE(2,20) R,HOVERR
WRITE(2,22)
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WRITE(Z2, 23)
DO 101 I =1,
WRITE(2, 24)
CONTINUE

WRITE(Z, 25)
WRITE(2, 26)
WRITE(Z2, 28)
WRITE(2, 30)
WRITE(2, 32)
WRITE(2, 34)
WRITE(2, 35)

NPLYS
THETA(T)
01
NPLYS,H
TPLY
El,E2
G12
G13,G23
viz, v21
RHO

—— — ————————— ———— i —————— ——— T ——— Y~ — ————— ——— Y —_— t— T —— — ——— — " o Y o g s

CALCULATE THE BENDING, EXTENSIONAL, AND HIGHER ORDER
STIFFNESS ELEMENTS FOR A SYMMETRIC LAMINATE.

CALL LAMINAT(NPLYS, TPLY, THETA,E1,E2,G12,V12,
1v21,G13,G23,PI,H, Al11, Al12, A22, A16, A26, A66, A44, A45, A55,
2D11,D12,D22,D16,D26, D66, D44, D45,D55,F11,F12,F22,F16,F26,F66,
3F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,J26, J66)

——— - — T —_———— o — ———— _— —— — — Y ———— i —— — Y ———— - — o ———— ————— — — ——— ———

WRITE LAMINATE STIFFNESS ELEMENTS
WRITE(2, 36)

WRITE(Z2, 40)
WRITE(Z,41)
WRITE(Z, 42)
WRITE(2, 43)
WRITE(2, 44)
WRITE(2, 45)
WRITE(2, 46)
WRITE(2, 47)
WRITE(Z2, 48)
WRITE(2, 49)
WRITE(Z2, 50)
WRITE(2,51)
WRITE(Z2, 52)
WRITE(2,53)
WRITE(Z2, 54)
WRITE(Z2, 55)

All,A12, A22
Al6, A26, A66
A44, A45, A55

D11,D12,D22
D16,D26, D66
D44,D45.D55

F11,F12,F22
F16,F26,F66
F44,F45,F55
H11,H12,H22
H16,H26,H66
J11,J12,J22
J16,J26, J66

eXoXeKkeRg)

———— o — —— —— ——— ———— i S — —— = . T S " ——p— T — —————— Y ——— . ——— T — = —

READ THE NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS.
DETERMINE THE DIMENSION OF THE MASS AND STIFFNESS MATRICES.

READ(1,5) MMAX

MSIZE = 5 *x MMAX *x MMAX
MSIZESQ = MMAX * MMAX

1) THEN

IF (NBUCVIB .EQ.
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WRITE(2, 57)

WRITE(2,59) MMAX,MSIZE,MSIZE
WRITE(2, 60)

ELSE

WRITE(2, 58)

WRITE(2,63)

WRITE(Z2, 64)

WRITE(2, 59) MMAX,MSIZE,MSIZE
ENDIF

- — ——— —— — ——— ——— T — o —— . —————— —— T V_—_ " —————— — —— — —— T ———— i ———————

USING THE BENDING, EXTENSIONAL, AND HIGHER ORDER STIFFNESS
ELEMENTS AND THE SHELL PANEL PHYSICAL CHARACTERISTICS AS
INPUTS, CALCULATE THE STIFFNESS AND MASS MATRICES AND THEN
FIND THE NATURAL FREQUENCIES AND/OR AXIAL BUCKLING LOAD AND
THEIR RESPECTIVE MCDE SHAPES.

CALL GALERK(PI,R,H,A,B,Al11,A12,A22,A16, A26, A66, Ad44, A45, A55,
1D11,D12,D22,D16,D26, D66, D44,D45,D55,F11,F12,F22,F16,F26,F66,
2F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,J26, J686,
3NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

. > - - —— i ———— - —— — — - —— ——— S — " T — T~ —f— T~ —— ———— o ——— Y~ ——

- —— . - — ——— — —__— o —— ——_~ ————— A et o S i T — ————— — ————— T~ — —— ———  ——— —

FORMAT STATEMENTS

1 FORMAT(F15.5)

3 FORMAT(D22.15)

4 FORMAT(E12.5)

5 FORMAT(IS)

10 FORMAT(////,5X, ’ANISOTROPIC LAMINATED CIRCULAR CYLINDRICAL S
*HELL PANEL’)

11 FORMAT(//,5X, ’VIBRATION PROBLEM’)

12 FORMAT(//,5X, 'BUCKLING PROBLEM’)

13 FORMAT(//,5X,’S2 SIMPLY SUPPORTED BOUNDARY CONDITIONS’)

15 FORMAT(///,5X, 'SHELL PANEL DIMENSIONS (in.)’)

17 FORMAT(/,5X,’a = ’,1X,F6.2,4X,’b = *,1X,F6.2,4X,’a/b = ’,1X,
*F6.2)

18 FORMAT(/,5X,’h = ’,1X,F4.2,4X,’a/h = ’,1X,F6.2,4X,’b/h = ’,1
xX,F6.2)
20 FORMAT(/,5X,’R = ’,1X,E12.5,6X,’h/R = ’,1X,F10.8)

22 FORMAT(//,5X, "SHELL PANEL LAMINATE DIMENSIONAL AND MATERIAL
*DATA’)

23 FORMAT(//,5X,’SYMMETRIC LAMINATE PLY LAYUP (DEGREES)’)

24 FORMAT(/,30X,F7.2)

25 FORMAT(/, 3X, 13, 2X, ’PLYS IN THIS’,2X,F4.2,2X,’in. THICK LAMIN
*ATE’ )

26 FORMAT(/,5X,’EACH PLY IS’,1X,E12.5,2X,’ins. THICK’)

28 FORMAT(/, 5X, 'ELASTICITY MODULII (psi): El1l = ’,E12.5,2X,'E2
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= ’,E12.5)

30 FORMAT(/, 5X,’IN PLANE SHEAR MODULUS (psi): G12 = ’',E12.5)

32 FORMAT(/, 5X, ' TRANSVERSE SHEAR MODULII (vsi): G13 = ’,E12.5,
*x2X,’G23 = ’',E12.5)

34 FORMAT(/,5X, 'POISSONS RATIOS: V12 = ’,1X,F6.4,3X,’vV21 = ’,1
*xX,F6.4)

35 FORMAT(/, 5X, ’MASS DENSITY (LB*SEC"2/IN"4): RHO = *,1X,Di1B.1
*x1)

36 FORMAT(///,5X, ’EXTENSIONAL STIFFNESS ELEMENTS (1b/in)’)

40 FORMAT(/,5X,’Al1l1 =’,F15.3,3X,’A12 =’,F15.3,3X, ’A22 =’,F15.3)

41 FORMAT(/, 5X,’Al6 =’,F15.3,3X,’A26 =’,F15.3,3X,'A66 =*,F15.3)

42 FORMAT(/,5X,’A44 =’,F15.3,3X,’A45 =*,F15.3,3X, ’A55 = 3)

43 FORMAT(//,5X, ’BENDING STIFFNESS ELEMENTS (1b x in)’)

44 FORMAT(/,5X,’D11 =’,F15.3,3X,°'D12 =*,F15.3,3X,°’D22 =

45 FORMAT(/,5X,’D16 =’,F15.3,3X,’D26 =*,F15.3,3X,’D66 = .

46 FORMAT(/,5X,’D44 =’,F15.3,3X,°D45 =’,F15.3,3X,°'D55 =’,F15.

47 FORMAT(//, 5X, ’HIGHER ORDER STIFFNESS ELEMENTS’ )

48 FORMAT(5X,’Fij (in % 1b~3),Hij (in % 1b"5),Jij (in * 1b"7)*)

49 FORMAT(//, 5X, ’F11 =’,F15.3,3X,’F12 =’,¥15.3,3X, °’F22=",F15.3)

50 FORMAT(/,5X,’Fl16 =’,F15.3,3X,’F26 =’ F15 3,3X,’F66 =’,F15.3)

51 FORMAT(/,5X,’F44 =’ ,F15.3,3X,’F45 =’,F15.3,3X,’F55 =’,F15.3)

52 FORMAT(//, 5X, ’H1l1 = ,F15.3,3X, *H12 = ,F15.3, 3%, ’H22=’,F15.3)

53 FORMAT(/, 5X, "H16 :’,F15.3,3x,'H26 =’ F15 3,3X,’H66 =’,F15.3)

54 FORMAT(//,5X,’J11 =’,F15.3,3X,'J12 =’,F15 3,3X,’J22=",F15.3)

55 FORMAT(/,5X,’J16 =’,F15 3, 3X *J26 =’,F15.3,3X,’J66 =*,F15.3)

57 FORMAT(///,5X,’VIBRATION EIGENVALUE ANALYSIS - FIRST 10 MODE
*S PRINTED’)

58 FORMAT(///,5X, 'BUCKLING EIGENVALUE ANALYSIS - ALL MOCDES PRIN
*xTED’ )

59 FORMAT(//,5X, ’MMAX = NMAX = °’,12,5X, 'STIFFNESS AND MASS/INE
*RTIA MATRICES ARE (’,13,1X,’BY’,1X,1I3,’)’)

60 FORMAT(///,5X, 'MODE NUMBER’, 11X, *EIGENVALUE’, 14X, *NATURAL FR
*EQUENCY (RAD/SEC)’)

63 FORMAT(5X, *THE CRITICAL BUCKLING LOAD IS THE EIGENVALUE WITH

x’)

64 FORMAT(5X,’THE SMALLEST ABSOLUTE VALUE’)

G o o o e e e
END

o S
SUBROUTINE LAMINAT(NPLYS, TPLY, THETA, E1,E2,G12,V12,
1v21,G13,G23,PI,H, Al11,Al12, A22, A16, A26, AB6, A44, A45, A55,
2D11,D12,D22,D16,D26, D66, D44,D45,D55,F11,F12,F22,F16,F26, F66,
3F44,F45,F55,H11,H12,H22,H16, H26,H66,J11,J12,J22,J16,J26,J66)

c

Gl e e e e e e e o e e e e e e em

c

C THIS SUBROUTINE CALCULATES THE BENDING, EXTENSIONAL, AND

C HIGHER ORDER STIFFNESS ELEMENTS FOR THE LAMINATE.

C

C THE LAMINATE IS SYMMETRIC WITH RESPECT TO THE MIDPLANE IN

C BOTH MATERIAL PROPERTIES AND ORIENTATION ANGLE, THETA.

C THIS THESIS ASSUMES A HOMOGENEOUS LAMINATE -- MATERIAL
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PROPERTIES ARE IDENTICAL FOR EACH PLY. THE ONLY TBING THAT
CAN CHANGE IS ORIENTATION ANGLE.
EACH PLY ALSO HAS THE SAME THICKNESS.

N i — — — —————— ——— —_— . —— ————— — T ——— s — . — T —— -~ ————_————— ——— — i W ot e

C
C
c
C
C
C

DOUBLE PRECISION H,PI,A11,A12,A22,A16,A26,A66, Ad44, A45,
1A55,D11,D12,D22,D16,D26, D66,D44,D45,D55,F11,F12,F22,F16, F28,
2F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,J26,
3J66, TPLY, THETA(100),E1,E2,G12,V12,V21,G13,G23,Q11,Q12,Q22,
4Q44,Q55,Q66,QBAR11, QBAR12, QBAR16, QBAR22, QBAR26, QBAR44, QBAR45S
5,QBARS55, QBAR66, ZK, ZK1, TH(100), ZKO, ZK3, ZK5, ZK7, ZK9

C  REDUCED STIFFNESS ELEMENTS IN PRINCIPLE COORDINATES
Q11 El1 /7 (1.0 - V12 % V21)
Q12 Vi2z x E2 /. (1.0 - V12 % V21)
Q22 E2 7 (1.0 -~ V12 % V21)
Q44 = G23
Q55 G13
Q66 G12

c INITIALIZE ALL STIFFNESS ELEMENTS TO ZERO
All
Al2
A22
Al6
A26
A66
Ad4
A45
AB55
D11
D12
D22
D16
D26
D66
D44
D45
D55
Fl1
F12
F22
F16
F26
F66
F44
F45
F55
Hi1
H12
H22
H16

H

nunun

©000000000000000000000000000000

(LI T I T U T I T Y T L A L O L VI I
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H26
H66
J11l
J12
J22
J16
J26
J66
IN ORDER FROM THE FIRST PLY AT Z = - H/2 TO THE TOP PLY AT

Z = + H/2, INPUT THE PLY ORIENTATION ANGLE, THETA. THEN IN

TURN CALCULATE THE QBARS AND THE STIFFNESS ELEMENTS FOR THAT

PLY. REPEAT THE PROCEDURE FOR ALL PLYS, THEN ADD THE PLY

STIFFNESS ELEMENTS TOGETHER TO GET THE LAMINATE STIFFNESS

ELEMENTS.

INITIALIZE Z TO THE BOTTOM OF THE LAMINATE

ZK1 = -H / 2.0

DO 100 I = 1,NPLYS

TH(I) = THETA(I) * PI / 180.0

COMPUTE THE QBARS - TRANSFORMED REDUCED STIFFNESS ELEMENTS

IN GLOBAL COORDINATES.

QBAR11 = Q11 * DCOS(TH(I))**4 + 2.0 * (Ql2 + 2.0 * Q66) x
IDSIN(TH(I))*%2 x DCOS(TH(I))**2 + Q22 * DSIN(TH(I))**4

QBAR12 = (Qll + Q22 - 4.0 * Q66) * DSIN(TH(I))*%2 x
1DCOS(TH(I))**2 + Q12 * (DSIN(TH(I))**4 + DCOS(TH(I))%*x4)

QBAR16 = (Qll - Q12 - 2.0 * Q66) * DSIN(TH(I)) * DCOS(TH(I))
1%%3 + (Q12 ~ Q22 + 2.0 % Q66) * DSIN(TH(I))*x*3 x DCOS(TH(I))

QBAR22 = Q11 * DSIN(TH(I))*%*4 + 2.0 x (Q12 + 2.0 * Q66) *
IDSIN(TH(I))**2 % DCOS(TH(I))**2 + Q22 * DCOS(TH(I))*x4

QBAR26 = (Qll - Q12 - 2.0 * Q66) * DSIN(TH(T))**3 % DCOS(TH
1(I))+ (Q12 - Q22 + 2.0 % Q66) * DSIN(TH(I)) * DCOS(TH(I))*x3 -
QBAR44 = Q44 * DCOS(TH(I))*%*2 + Q55 * DSIN(TH(I))*x2

[ I I O T TR I R T I
00000000

aoaoaaaoan

QBAR45 = (Qd4 - Q55) * DCOS(TH(I)) * DSIN(TH(I))
QBARS5 = Q55 * DCOS(TH(I))*%2 + Q44 * DSIN(TH(I))**2
QBAR66 = (Q11 + @22 - 2.0 % Q12 ~ 2.0 * Q66) *DSIN(TH(I))**2

1x DCOS(TH(I))**2 + Q66 * (DSIN(TH(I))**x4 + DCOS(TH(I))*x%x4)
TOP AND BOTTOM LOCATION OF PLY(I)

ZK = ZK1 + TPLY

EXTENSIONAL STIFFNESS ELEMENTS

ZKO = ZK - ZK1

All = QBAR11 * ZKO + All
Al2 = QBAR12 x ZKO + Al2
A22 = QBAR22 * ZKO + A22
Al6 = QBAR16 x ZKO + A1l6
A26 = QBAR26 x ZKO + A26
A66 = QBAR66 x ZKO + A66
Ad44 = QBAR44 *x ZKO + A44
A45 = QBARA45 x ZKO + A45 - 5
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A55 = QBAR55 x ZKO + A55

BENDING STIFFNESS ELEMENTS

ZK3 = (2K%x3 - ZK1x%3) / 3.0

D11 = QBAR11 x ZK3 + D11

D12 = QBAR12 * ZK3 + D12

D22 = QBAR22 x ZK3 + D22

D16 = QBAR16 x ZK3 + D16

D26 = QBAR26 * ZK3 + D26

D66 = QBAR66 x ZK3 + D66

D44 = QBAR44 * ZK3 + D44

D45 = QBAR45 *x ZK3 + D45

D55 = QBAR55 * ZK3 + D55

HIGHER ORDER STIFFNESS ELEMENTS

ZK5 = (ZKxx5 - ZK1xx%5) / 5.0

F11 = QBAR11 x ZK5 + F11

F12 = QBAR12 x ZK5 + F12

F22 = QBAR22 x ZK5 + F22

F16 = QBAR16 x ZK5 + Fi16

F26 = QBAR26 * ZK5 + F26

F66 = QBAR66 * ZK5 + F66

F44 = QBAR44 * ZK5 + F44

F45 = QBAR45 * ZK5 + F45

F55 = QBAR55 x ZK5 + F55

ZK7 = (ZKxx7 - ZK1x%x7) / 7.0

H11l = QBAR1l x ZK7 + H11

H12 = QBAR12 * ZK7 + H12

H22 = QBAR22 x ZK7 + H22

H16 = QBAR16 * ZK7 + H16

H26 = QBAR26 * ZK7 + H26

H66 = QBAR66 * ZK7 + H66

ZK9 = (ZKxxg - ZK1x%g) / 9.0

J11 = QBAR11 x ZK9 + J1i1

J12 = QBAR12 x ZK9 + J1i2

J22 = QBAR2Z x ZK9 + J22

J16 = QBAR16 * ZK9 + J16

J26 = QBAR26 * ZK9 + J26

J66 = QBAR66 * ZK9 + J66

GO TO NEXT LAYER

ZK1 = ZK

00 CONTINUE

RETURN

END

SUBROUTINE GALERK(PI,R,H,A,B,Al11,A12,A22,A16, A26, A66, Ad44, A45
1,A55,D11,D12,D22,D16,D26,D66,D44,D45,D55,F11,F12,F22,F16,F26
2,F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,J26
3,J66, NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

THIS SUBROUTINE GENERATES THE GALERKIN EQUATIONS AND FORMS
THE MASS AND STIFFNESS MATRICES. THEN IT CALLS DGVCRG, AN
IMSL SUBROUTINE WHICH SOLVES THE EIGENVALUE PROBLEM:
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C [STIFF]{X} = (OMEGA"2 OR N1BAR)[MASS]{X}.

DOUBLE PRECISION PI,R,H,A,B,Al11,A12,A22,A16,A26, A66, Ad44,
1A45, A55,D11,D12,D22,D16, D26, D66, D44, D45,D55,F11,F12,F22,F16,
2F26,F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,
3J26,J66,STIFF(MSIZE, MSIZE), MASS(MSIZE, MSIZE), AUO, BUO, CUO, EUO
4, GUO, AVO, BVO, CVO, EVO, GVO, AW, BW, CW, EW, GW, AJX, BJX, CJX, EJX, GJX,
5AJY,BJY, CJY,EJY, GJY, AUOMASS, BUOMASS, CUOMASS, EUOMASS, GUOMASS,
6AVOMASS, BVOMASS, CVOMASS, EVOMASS, GVOMASS, AWMASS, BWMASS, CWMASS
7, ENMASS, GWMASS, AJXMASS, BJXMASS, CJXMASS, EJXMASS, GJXMASS, AJYMA
88S, BJYMASS, CJYMASS, EJYMASS, GJYMASS, RHO, I2BARPR, I3BARPR, I5BAR
9,17,11, 14BAR

INTEGER P,Q

C THESE VARIABLES NEEPED FOR THE IMSL EIGENVALUE SOLVER.

DOUBLE PRECISION BETA(MSIZE), REVAL, OMEGA, AGEVAL, AGEVEC,
1REVEC(MSIZESQ)

DOUBLE COMPLEX ALPHA(MSIZE), EVAL(MSIZE),EVEC(MSIZE,MSIZE)

C _______________________________________________________________
C NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS
NMAX = MMAX
C GENERATE GALERKIN EQUATIONS
I =1
J =1
DO 10 P = 1,MMAX
DO 10 Q@ = 1,NMAX
DO 20 M = 1,MMAX
DO 20 N = 1,NMAX
G o e e
c COMPUTE STIFFNESS MATRIX ELEMENTS
G m
IF (M .EQ. P .AND. N .EQ. Q) THEN
C
AUO =
1(3x%PI**2xAXDEEKH**2~4XPI*xx2%AXFE6 ) *Qk*2 / (BXHX*x2*R) /8.0
BUO =

1((3*PI**x2%xDE6+6KPI%%x2%D12) ¥H*%2-4*PI*%2%F66-8%PI*x*2%xF12 ) *xP*Q
1 /(H*x%2%R) /24.0

CUoO =

1-((BXPI**3XFE66+4%PIXx%k3%F12) kP*xQ**2~3%PI%A12%BX%2xHX%*x2%P) /(B*
1Hx*x2%xR)/12.0

EUO =

1-( (4XPIXX2%kAXK2XAG6kQ*kX2+4%PI%X%k2%A1 1 %kBRXk2%KP%k%2) XRAkk2+PIXkA2%kA
1%%2%DE64Q**2) /( AXBXR*%2) /16.0

GUO =

1-((4¥PIX**2%A66+4%PI%k%x2%A12) xPxQ*R*x%2-PI*xx2XxD66*P%Q) /R%*x%2/16. :

AVO =

1(3%PIx%2%xDE6XH**2-4%PI*x%2%F66 ) *xP*Q/(H*x%x2%R) /24.0 ‘1
BVO =

1((6XPIX%k2%xAXXk2%D22XH%%k2 -B8XPIXXk2XAXk2%kF22 ) *%Q¥%x2+ ( 4%kPI%*%2%xBx%x2
1%XFE66-3%PIkx2xB%%2XxD66XH*X2 ) *Px%x2) /( AXBXxH*%*2%R)/24.0 j
CvVOo = :
1-(4%PIX%x3XAXF22%QX*3-3X%PI*xAXA22%BXxkx2XHX%2%Q) / (B**2XHX%2%R) /1 L _
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12.0

EVO =

1-((4%XPIXX2%xA66+4%PIXx%2%A12) ¥*P*Q*R*x%2-PI**x2%xDE66*PXQ) /R**2/16.
GVO =

1-( (4*¥PIXX2XAXX2XA22%XQ¥ k2 +4 %P T kX2 XA66XBX*2¥P%%x2 ) XR*x*2+PI%x*2*B
1%%2%xDB6*P**x2) /( AXBXR%*2) /16. 0

AW =

1-(((32%PI%**3%kA%%*2%HE6+16%PI*k%k3%kA%x%k2%H12+ (-24%PIXx%x3%AX*2%*xFE6 -
1124PI%%3%xA%%2%F12) kH%k%2 ) XP*Q* %2+ ( 16%kPI*%3%Bx*%2%H11-12%PI%%3%
1BXk2%F 1 1XH*%2 ) kPXk%3+ (GkPIXAK%k2XA55XBkk2XHkk4—-T72%xPIkAXX2XBk%X2
1%D515%kH%%2+144*%PIXAX%k2%BXxX2%F55) XP) xRXx*2+ ( 16 XPIXx%x3%AX%2%J66 -
1%%*?1**3*A**2*H**2*H66)*P*Q**Z)/(A**Z*B*H**4*R**2)/36.0
1-(((16X¥PI*%k3%kAXXk2%XH22-12%PI k%I XAKK2KF22XHk%k2 ) %Q*k%k3J+ ( (32%PI%x
13%B**Z2%HE6+16%PIkk3%xBk%x2%H12+( -24%PI%**3*%Bxk2%FE56-12%PI%%x3%Bx
1%2%F12) kHX%2 ) kPk%k2+9%PI%AX%2%A44%kBxkk2kH*k%k4-72%P T xAXx%x2%xBx%2%xD
144%H*%2+144%PIXA%%k2%XBXx*2%F44)%Q) kR*¥*%2+( 16%PI*xk3kAX*2%J22~-12%
1PI*%k3kAxX2KkH*%2%XH22 ) %Q%k %3+ ( GKkPI xA%k2%kBXx%x2%D22kHXx%4~12XPIkA%%
12xBXx%2XF22kH*%2 ) %Q) /( AXBXx*2*H*%x4XxR%*%2) /36.0

CW =
1-((16%PIx%k4%xA%kk4XH22*%Q* X4+ ( (64%XPIXkKk4KAKXK2¥Bk*2XHES+32%PI%%k4*
1A%%2*%Bx%k2%H12 ) XPkk2+9kPI*k%k2%AXk4kA44%XBXk2kHKkkq-T72%XPIkk2%kA%X%4
1%Bx%x2%D44%H**2+144%PI%%x2%Axk4XBk*k2%kF44 ) kQ¥*k2+16%PI%kk4XBxxq*xH
111%P*xk4+( 9XkPIXK2KAKK2KASHXBRRk4XkHAkk4 -7 2%XP I kK2 kAKKk2kBxk4%D55%H
1%%2+144X%PIk%k2%kAXX2%KkBRkXk4XFES ) XPxx2 ) kRXX2+16XPI kK4 KkAKKE %22 %Q*
1%4+ (16X¥PI*X4kAXK2XkBX k2% JE6KP*kX2-24 %P I k%2 %k AXk4XBRX2kF22kH k%2 )
1XQ¥ X2+ 9KAKK4XA22¥BX k4 XH*%4) / ( Axk3kBRkk3IKkHX*k4XRx%*2) /36.0

EW =
1-((BXPI*%3%FB6+4%PI**3%xF12 ) *xPxQ%x%2-~3%PIXA12*%BXx%2*xH%x%2%P) /(B*
1H*%2%xR)/12.0

GW =
1-(4*¥PIX*3%AXF22%Q**3-3%PIkAXA22%Bxkx2XH*x%2%xQ) / (B*xx2%xHx%2%R) /1
12.0

AJX =
1-(((16%PIxx2%A%*x2*¥HE6+G%XPIkk2%xAX%k2%kDEEXHKk%k4-24%P] k%2 kA%X2XF6
16%HXx2 ) %Qk¥2+ (16 XPI*%k2%BXx*2%H114+9%kPIx%x2%Bx%x2%D11*xH*%4-24%PIx
1%2%Bxxk2%kF11%H*k%k2 ) XPkk2+9kARKK2KkASHXkBXkKk2XH%k%k4-T2XAXX2XB%k%k2%DE5
1kHX%2 4144 kAXK2%kBX%X2%KkF55 ) kR¥kk2+ ( 16XPI k%24 AXX2%JE6-24%P I Xx%x2XA%
1%2%HX%k2XHE6+9XKPIkk2kAKK2XFEEXHXk*4 ) %Qx*x2 ) / (AXBXH*%k4xR%x%2) /36,
BJX =

1-(16X%PI%*%2XHE66+16%PI%%x2XxH12+ (9%PI%%2%D66+9%PI%%2%D12 ) kH**x4+(
1 —24%PIxx2%F66-24%PI%%x2%F12 ) xH%*%2 ) *%P*Q/H%*%4/36.0

CJX =

1-(((32%PIX%k3kAXK2¥HE6+16%PIx%kIkAXK2%kH12+ (-24%PI%k%k3kA%K2%*F66-
112%PIxx3xAxX2%xF12 ) *xH%x%x2 ) *¥P*Q%x%*2+ ( 16 %PI*x%*x3%xB*%2%H11-12%PI%%3%
1BXxk2%F11kHXx%2 ) kPk%3+ (GkPI kA% k2 %kA55XKBRkk2KHk*4 -7 2%PIkA%%k2kBkk2
1%D55%HX%2+144%PIXkA%*2XxBXx%2%F55) kP ) kR*x%2+ ( 16 XP [ X k3 kA%%2%J66-1
12%PI%%X3XAXX2XH*%2%HEE ) kP*kQ*%2) / ( Akk2%XBXkH%xk4XR%%2) /36.0

EJX =
1(3*PI*x2%AXDE6XHX%2 -4 %kPI%x%x2XkAXF66 ) %Q%%x2 /( BXH*%2%R) /8.0

GJX =

1(3%PI*x*%2%DE66XH*%x2-4*%PIxx2%XF66 ) *P*Q/(H*x*2%xR) /24.0




AJY =
1-(16%PI*xx2%H66+16%PI**2%H12+(9xPI*x%x2%xD66+9%PI%x%2%D12) *¥H*%4+(
1 ~24%PIx%2%F66-24%PI%%x2%F12 ) xH*x*x2) *P*xQ/H**4/36. 0

BJY =
1-(((16%PIx*2%kA%X2%kH22+G%XkPIkk2%kA%X2%¥D22%kHXx%x4-24%PI%x%k2%A%X%2%xF2
12%HX%2 ) %Q¥%x2+ ( 16 %P1 x%2%BXxx2%xHE6+9%xPI*x2%kBk%k2%xDEBXH*k*4-24%P I %
1%2%xBk%k2XFE6XH®%2 ) XPXk24+FXAKK2KA44XBKkk2kHXKk4-72kAXX2KkBk%x2%xD44
1XH*%2+144%A%K2XBXx%k2%F44 ) kR¥x%2+ ( 16 ¥PIk%k2%KAX k2% J22-24%P I k%2 %A%
1X2XH*k2%xH22 +O%kPIXk2XA%%x2%xF22%H%x%4 ) %Q*%2 ) / ( AXBkH**4*xR*%*2) /36,

CJY =
1-(((16*¥PI%*%k3%A%%K2%H22-12%PI%kk3kA%k2%kF22kHA%k2 ) kQux3+( (32%PI%xx
13%Bx*2%xH66+16X%PI%xkx3%B*x%2%xH12+ ( -24%PI%*3%Bk%2XFE66-12%PI%%3%Bx
1X%2%F12)XH%%2 ) kP%k%k2+9%kPI%A%x%k2%A44*BXXk2kH¥%k4-T72%P I kA%k2%xB%xx2%xD
144*%H**2+144%PIxAXX2%Bxx2%F44)%Q) *RXxk2+( 16XPI*X3XAX%k2%J22-12%
1PI %3 kAXk2XHKkk2KkH22 ) kQk*3+ ( 9XPI kAXKk2%XBRk%k2%D22KkH* k4 -1 2KkP I kAKX
12%BXx%2X%F22xH*%2 ) %Q) / (AXBx*2%H%xx4%R*x%2) /36.0

EJY =
1((3*¥PIx*2%D66+6XPIXxXx2%xD12)XH%*2-4*¥PI*%x2%F66-8%PI*x*x2xF12)%xPxQ
1 /(Hx%x2%xR)/24.0
GJY =
1((6XPI%x%x2%A%%2XD22%H%%2-B8%kPIkk2%AXk2%F22 ) kQ¥*2+ ( 4%P I %%x2xB%%2
1XkF66-3*%PI*x2%Bx%x2%*DE6*H**2 ) *xPx%2) /( AXBxH*x*2%R)/24.0

ELSEIF (MOD(M + P,2) .NE. O .AND. MOD(N + Q,2) .NE. 0) THEN

AUO =
1-((12%xD16%H*x%x2-16%F16 ) XNXPX%2+ (6 %D16XH*x%x2-8%xF16 ) *Mkx2 %N ) *Q/ (
1( (3KH*KZ2KPARKZ ~ZKHKXKZAMAKZ ) kQ*k %2~ ZKHKkKk2XNKK2XPXX2 +3KHKA K2 kMK k2
1%kN*x%2)*R)

BUO =
1-(6%AXD26XH*%2-8X%AXF26 ) xXMAN**2X%Q/ ( ( ( BXHX%2¥PXX2-BkH*k%2%XMx%2 )
1%kQ% %2 ~BxH% k2 kN ¥ k2 %P Akk2+BRHkk2XkMkk2KkN%XX2 ) %R)

CUO =
1(16XPI%x%x2%Bk%2%F16XMAN*P*%x2+24%PJ%%k2%A%%k2XF26XMKN*%k3+ (8%P I %%
12%BX%k2%F16XxM*%3-12%A%Xk2%xA26%kBkk2kH%k%k2KkM) kN ) *Q/ { ( (3kPIkAXB%%2
1RkHXk2 %P k%2 -3 %kPTRAXBXKk2KHX k2 kMX K2 ) kQk*k2 -3 kP TkAKXBXKk2KHX%k2 kN k%2
1%PXk%2+3%PIXAXBk%k2 XH*k%k2 kM*%k2%kN%%2 ) *xR)

EUO =
1(4%A16XN*kPx%x2+4%A16XM¥k%k2%XN) *Q/ ( (P%%2-Mk%k2 ) kQXk2 —N*kx2xkPkxk24+Mxk
1%2%N*%x%2)

GUO =
1(4%A16X%BXX2KMKPRX2+4XkAKXK2KA26XMXN®k%2 ) *xQ/ ( (AXBXP*%2-AXBXkM%%2 )
1%Qkk2 - AXBXN*®Kk2XPXx%2 +AXBXM¥k2kNXx%x2 )

AVO =
1-((12%A%x2%D26XH%%2-16%A%%2%XF26 ) kNKkP*Q%k%2+ ( 8XB%kk2%F 16~-6%B%x%2
1XD16XH%x%2 ) kMkX2%XN*kP) /( ( ( SKAXBXHX%k2*¥PXx%2 -3 kAXBKH kK2 kMk%k2 ) Q%%
12-3%AXBXH*%x2KkNXx %2 kP*k%k2+3kAKBKRHX%k2 XMk k2KkN*%2 ) %R )

BVO =
1-(6%D26XH*%2-8XF26 ) kxMAN*%x2%P / ( ( ( 3¥kH* Kk2KPk%2 -3 xH¥xk2kM*k%k2 ) kQ¥kX
12-3%H*%k2AkN*k2%KP k%2 +3KkH%kk2XMkk2XkN*%2 ) *R)

CVO =
1(16X%PIx%x2%AXX2¥F26 XMANXPXQX%2+ ( BXPI%*%x2%xAX%x2XF26XMAkN*®x%x3+ ( -8%P
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1Tx%2%kBkk2XF16%kMAkk3I-12%kA%%2KA26%BRkk2kH*x*x2%xM) %xN)*P) /( ((3%PI*AxX
1%2XBXHXk2XP%x%k2-3kPIXAX%2XBXH*k%k2kMkk2 ) XQkk2~3KP I XAKK2kBKHkK*X2 %
INXXk2%XPkk2+3%kPIRAXK2KkBRHXX2KkM*k%k2kNX%x2 ) xR)

EVO =
1 (4%AXKZXRAZ6XNKkP*Q¥%k2+4%A16XBx%k2xMAkk2KkNXP) / ( ( AXBRPX%k2 - AXBRMkk
12)%Q%%x2 - AXBANKk2kP*k%k2+AKBRMKKk2XN%x*2 )

GVO =
1(4%A26%XMAkPxQ%x%2+4%A26 kMXNX*k2%XP) / ( ( PXX2-MxXx%k2 ) kQk %2 -Nk*k2kP%k*2 +
IMRX2XN*%2 )

AW =
1(((B84*%PIXx%2%A%%2%H26-48XPIXxk2%A%Xx2XF26%H%x%2 ) kNXxXx3+( (192%PI%x%
12%BXx%2%¥H16-144%PI*x2%BXx%2%F 16XH%%2 ) kMXk2+36kKAXK2KA45XxBkx2 kHxX
1%4-288%A%*x2%Bkx*2%D45XHXx%x2+576kAX%2%XxBx*2%xF45) %N ) xP*Q*R**2+( (6
14%PIXk2KAXK2%KJ26-48%kPIkK2XAKK2KHXXx2KkH26 ) kN*k%k3+ ( 36KAKK2XBA k2 X
1D26%H%*%4-4B8%xA%X2¥Bxk2KF26XH*%2 ) *N ) *xP*Q) / ( ( (9*P Ik AXBk%k2xH k%4 %
1Px%2-9XP I kAXBXXx2XHkkgkM*kk2 ) kQXKk2 -GKkP T *kAKBkKk2 KHKkk4KkNKXX2KkPx%2 +
19X%PIXxAXBXx2XH %% 4XM*k%x2kN*k%2 ) kR%k%2 )

BW =
1(((192%PI%k%k2%kAXX2%H26-144%PI*k*2%AXXx2%F26XHX*2 ) kMXN*%2+ (64 %P1
1%x2%B*%2XH16-48%PIx%k2%BXx%2%F16XH%%2 ) kMX%k3 + ( 36 kAXX2%kA45XB*k%2 %
1H*%4~-288%A%*k2%XBXx%x2%D45XHX%2+576 %A% k2 XxBxk2%F45 ) M) kPkQXRAk %2 + (
164X¥PIk%k2%kAXK2%J26-48*kPIk*k2kA%%x2kHx*k2*¥H26 ) kXMXN*k*2%P*Q) /( ( (9P
1I%AXX2XBkHk k4 kPx%k2-9%PTkAXK2KBXH*k4XxMXx%k2 ) %Q*k*2 -9 %P I kAx%2%kBxkH
1%K4RNRK2XPk%2+9%PIkA%%2kBRHk k4 kMkk2kN*%k%k2 ) kR%x%2)

CW =
1((256%PI%xx2%A%k2¥H26XMXN*k*3+(256%PTk%2%B*xk2%XH16XMX%k3+ (72%kA%X
12%A45%BXXx2%H%X%4~576%A%%x2%Bxk2XxD45XkHAk%k2+1152%AXX2%XBXk%k2%xF45 ) %M
1)%N) *XP*Q%¥R*%2+ ( 128%PI%%k2%A%%k2% J268KkMAkN*®k%3-96%kA%k2xBx%x2%xF 26 XHx%
1k2XMXN )} XP*Q) / ( ( ( 9kA*%X2XBXkX2XHKKk4KkPKX2 -Gk AKK2KBKRK2KHRKGKMKX2 )
1XQA k2 -GkAXK2 KBRXZ KHKk kG KNKkK2KkPXX2+9KAKK2KkBkk2kHK k4 KkMAk2KN*%k%2 )
1XkR*%%2)

EW =
1(BXPIX%k2%kA%%k2KkF268%kN*k%k3+ (B8RP Ikk2%kBhkk2%xF16%kMkk2-4XAKK2KA2EXB XX
12X%HX%%2) kN ) ¥xP*Q/ ( ( (PIkAXBX*2XH*%2%Px*%2-PIkAXBXk2XHXx*2kM*%2 ) *Q
1%k%x2-PIXAXB*kXx2XHk%x2XN*kXx2%Pxx2+PI*AXBkk2kH*kx2 kMkx2%kN*k%2)%R)

GW =
1(24%PIX%2%kA%%k2%XF26XkMAkN*k%2-8%kPIk*2%BXk%k2%F16XMXx%k3-12%A%XX2XA26%
1BXk2XHXX2%kM) ¥P*Q/ ( { ( 3XPIXAXK2XBKHkk2XP%k%k2 -3%P I kA%%k2%xBkH*%2 kM
1%%2 ) kQA X2 —3KP T RAKK2 KBAKH Kk Z KN kk2 kPkk2+3%kP T kA %% kB xH%%k2 kMxk*k2 %N
1%%2)*R)

AJX =
1((128%xH16+36%D16*HXx%4-144%F16%H*%x%2 ) kNAkPXx%2+ (36%D16%H*%x4-48%F
116X%HX*2 ) xMkx2%N ) *Q/ ( ( 9KkH*Xk4XkP*k%k2 -9 XH*k4kM*kk2 ) kQkk2 -8 kH %%k g kN x
1X2%P k2 +9KH kK4 kMAkk2 Kk N*k%2 )

BJX =
1(((128%PI**2%B**2%H164+36%PI%%x2%xBxx2%xD16%xH%%4-144%P I %x%2%B%%2%
1IF16%XH*X2 ) xM*P%%2+ (6 4%PI%xX2%A%X%2XH26+36 %P *k2XAX*k2%D26 ¥H*%*4-9
16XPIXx%k2%A%%k2XF26XkH%%2 ) kMAN*%2+ (48 %P I k%2 %XkBXk%k2%xF16XkH*%2-64%P] %
1%2%BXX2XH16 ) ¥M¥x%x3+ ( IBXAXX2XA45XBXk2XHX%k4-288%kAXXk2*xBXxk2XD45%H
1%%24576%AXX2XBXX2XF45 ) ¥M) *QXRX%%2+4 ( 64 XPI %%k 2XA%X*2%J26-96 %P I *%2
1kAXK2XkHXX2KkH26+36%PIXk2XAXX2XF26%XH%X%4 ) kMKN*k*2%Q) / ( ( (9%PI*k%2x%
1AXBXHAX4%kPx%k2-9%kP T %k%k2XxAKBXHXX4AkM¥K2 ) XQkk2 ~QKkP I k%2 KAXBKH X% 4%N




1%K2KPk*2+GXP I xkk2kKAKBRHXKGKkMAX2KNX*k2 ) XR*k*2 )

CJX =
1(((256%PI%x*2%Bx*2*%H16-96 %P1 %x%x2%XBXx%2%F 16 XHx%2 ) kMXNXP* %2+ ( 64 %P
1IX%2X%A%K2KH26 -4B8XPIXk2%kAX%k2%kF26XkH*x%2 ) kMANKk3+( ( —64%P I *%2%xB%kx
12%H16-48%PI%k2%Bkk2%F16kH*x%2 ) kxMx*x3+ (36%kAKKk2%XA45X¥Bxx2%xH*%x%4-28
18%A%XX2%Bk%k2%D45XH*k%2+576KAXK2%*Bx%k2%XF45 ) kM) kN ) *QAkR*x*2+( (64%PI
1RX2%KAKK2¥T26-48XPIkk2KAXX2XHRkX2%XH26 ) kMANK*Kk3+ ( 36 XAKk2%Bxx2%xD2
16X%H*%4-4B8XxAx*2%xB*x%x2XxF26XH*%%2 ) X*MkN ) Q) / ( ( (9%kP I kAXB%k%2XH%*%4XPX
1%2-9%kPIXAXBAkk2kHk kg XkMkk2 ) %Qk k2 ~OkPT kAKB*x2 kHkk4kNkk2kPkk2+9%
1P IXAXB®%2xHx%k4kM*kk2KkN*k%2 ) kR*k*%2 )

EJX = ‘
1-((6%D16%Hx%2-16%F16) *N*Px%x2+(12*¥D16XkH**x2-8%XF16 ) xMk%x2%N ) *xQ/ (
1( (3kHAX2KPk%k2 -3 XkHKKk2XMAkk2 ) kQKK2 ~3 KH k%2 KNk k2 kP k%2 + 3 kH X%k 2 kMx %2
1xNxx2)*R)

GJX =
1((6%Bx%2%D16%H%%2-16%B%x%x2%F 16 ) kXMAP*k%2+( 16%kAXXk2%XF26~12%AXx%X2%xD
126 %H%%2 ) kMAN*%2+8%Bx*2*F 16XM%x*3 ) %Q/ ( ( ( 3XKAXBXHX%k2XP*%2 -3 %kAkBxX
THX*2XMA k2 ) *Q* k2 - 3kAKBKH Kk 2XNX %2 kPkk2 +3kAKBKH) %2 XMxk2kN*%2 ) xR
1)

AJY =
1(((12BXPI%%2%A%%2%H268+36%PI%%2%kA%%k2%D26%H%%4-144%P1%x%2%A%X%X2 %
1F26%H*%2 ) XNkP*Q% %2+ ( (48%kPI%%k2%XkAX%x2%kF268XkH%x%2-64%kPIx%2kA%x%x2%xH2
16 ) XN%x%x3+( (64%PI%x%2%Bx*x2%H16+36%PIxx2%Bx%2%xD16*H*%4-96%PT%%2x%
1B*k2XF16XH%%2 ) kMx%k2+36kA%%K2%XkA45kBhk2kH*k%k4-288kA%%k2%kBAkk2%kD45 %
1IHX%X24+576XAXK2%kBXk%k2%F45 ) %N ) kP ) kR*¥%2+ ( 128%PI%x%x2%xA%x%x2%J26-144%P
1Txk2%kAXK2XHX K2 KH26 +36XPI k2 %k AXX2XF26 KHk%4 ) kNKPXQkX %2+ ( 48%P I %%
12%A%%XZ2XHX%Z2%XH26-64%PIkk2%kA%%k2%J26 ) kNk%k3%P) /( ( (9%PI%%2xAXBxHx%
1%4%Pk%2-GkP Ik k2 XkAKBKHKKLKMAKZ ) kQuk2 -G kP I kK2 Kk AXBKH¥ ¥ g RkNA*k2 %P %
1%249%PIxkk2XAKBXHK K4 KMRX2XNK*2 ) kRKk*2 )

BJY =
1((128xH26+36%D26%H%x%4-~144%F26%H%%2 ) kMAkP*Q*%2+ (36%D26%H%%*4-48
1xF26%xH*%2 ) kMAN*%2%P ) / ( ( GXkHk X4 kPkk2-GkHX k4 XMkX2 ) XQK k2 ~GkH* kg%
INXKK2KkPXRk2+9KHR k4 XMA k2 KN%x%2 )

CJY =
1(((256%PIxk2%A%x*2%H26~96%PI*%k2XAX%2%XF26XH*%2 ) xMkNKkPX*Q* %2+ ( ( —
164%PI%X2%A%%2%H26~48%PIkk2XAXk2XkF26kH%k*2 ) kMANKKk3 4+ ( (64%P] k%2 %
1BXxX2XH16-48%PI*k2%XBk%k2%F16XH%%2Z ) kMkk3+ ( 36KAXK2%KA45KB*k%k2kH*%k4q
1-288%AXK2XBXkk2XD45XHk%k2+576%A%X2%XBx*2%XF45 ) *M) kN ) %P ) kR*%2+ (12
18XPI*%k2%xA%%k2%xJ26-48%PIX¥k2XA%%k2XHXxkx2KkH26 ) kKMANXPXQ*k%2-64%P ] %%2
1%AXX2%xJ26 XMANXXk3%P) /( ( (F*PIXA%%x2xBXxHXxx4XP%x%2 -9 xP I xAX%2XBXH*%%
14XM%%2 ) XQ%k%k2 -9 kP I kA%KZ kBRH kg ANk k2 %kPk%k2+9%kP T kA% K2 kB kHkkgkMxkk
12%N*%2 ) %kR*x%2 )

EJY =
1-((6*%AXD26XH**2-16%A%XF26 ) xN¥XPxQ% %2 +8%AXF26%XN*x%x3%P) / ( ( (BXH%%2
1%kP%k%2 -BRHX %2 kMX k2 ) kQ*k k2 ~BRHK%k2KkN*k k2 kPhkk2 +BKHAkk2kMkk2kN*x%x2 ) XR
1)

GJY =
1-((6%D26*Hx*x2-16%F26 ) *M*xP*Q%%x2+8%F26XxMAN*x%2%P) /( ( ( 3kxH%x%x2xPxx
12-3KkHKKk2XkMX%k2 ) XQ¥k k2 -3 KHK K2 KN X k2kP¥xk2 +3KHKX2kMkk2%kN*k%2 ) XR)

ELSE
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AUO = 0.0

BUO = 0.0

CU0 = 0.0

EUO = 0.0

GUO = 0.0

AVO = 0.0

BVO = 0.0

CVOo = 0.0

EVO = 0.0

GVO = 0.0

AW = 0.0

BW = 0.0

CW = 0.0

EW = 0.0

GW = 0.0

AJX = 0.0

BJX = 0.0

CJX = 0.0

EJX = 0.0

GJX = 0.0

AJY = 0.0

BJY = 0.0

CJY = 0.0

EJY = 0.0

GJY = 0.0

ENDIF
G o e e e e
C STORE THESE TERMS IN THE STIFFNESS MATRIX
B o e e e e e e e e

STIFF(I,J) = AUO

STIFF(I,J + MMAX x NMAX) = BUO

STIFF(I,J + 2 * MMAX *x NMAX) = CUO

STIFF(I,J + 3 * MMAX x NMAX) = EUO

STIFF(I,J + 4 x MMAX * NMAX) = GUO

STIFF(I + MMAX * NMAX,J) = AVO

STIFF(I + MMAX * NMAX,J + MMAX * NMAX) = BVO

STIFF(I + MMAX *x NMAX,J + 2 x MMAX * NMAX) = CVO
STIFF(I + MMAX * NMAX,J + 3 *x MMAX *x NMAX) = EVO
STIFF(I + MMAX * NMAX,J + 4 x MMAX *x NMAX) = GVO
STIFF(I + 2 % MMAX * NMAX,J) = AW

STIFF(I + 2 *x MMAX x NMAX,J + MMAX x NMAX) = BW
STIFF(I + 2 % MMAX * NMAX,J + 2 * MMAX x NMAX) = CW
STIFF(I + 2 x MMAX x NMAX,J + 3 *x MMAX x NMAX) = EW
STIFF(I + 2 x MMAX * NMAX,J + 4 *x MMAX * NMAX) = GW
STIFF(I + 3 x MMAX x NMAX,J) = AJX

STIFF(I + 3 x MMAX *x NMAX,J + MMAX * NMAX) = BJX
STIFF(I + 3 x MMAX * NMAX,J + 2 *x MMAX x NMAX) = CJX
STIFF(I + 3 x MMAX * NMAX,J + 3 * MMAX x NMAX) = EJX
STIFF(I + 3 * MMAX *x NMAX,J + 4 x MMAX x NMAX) = GJX
STIFF(I + 4 x MMAX x NMAX,J) = AJY

STIFF(I + 4 x MMAX x NMAX,J + MMAX x NMAX) = BJY
STIFF(I + 4 x MMAX * NMAX,J + 2 *x MMAX x NMAX) = CJY

143




STIFF(I + 4 *x MMAX x NMAX,J + 3 % MMAX * NMAX) = EJY

STIFF(I + 4 * MMAX x NMAX,J + 4 *x MMAX * NMAX) = GJY
e e e e e e e e e e e e e e o e e e o e e
C COMPUTE MASS MATRIX ELEMENTS
Gl e e e e e e e e e o e e o o e e e

C FIRST CALCULATE THE MASS MOMENTS OF INERTIA.
I2BARPR = RHO * H*%*3 / (15.0 x R)
I3BARPR = RHO * H**3 / (60.0 * R)
IS5BAR = RHO * H*%*3 % 4.0 / 315.0
I7 = RHO *x HXxx7 / 448.0
I1 = RHO x H
I4BAR = RHO * H*x3 % 17.0 / 315.0
AUOMASS =
BUOMASS
CUOMASS
EUOMASS
GUOMASS
AVOMASS
EVOMASS
GVOMASS
EWMASS
GWMASS
BJXMASS
EJXMASS
GJXMASS
AJYMASS
EJYMASS
GJYMASS

00000000
QOOOO0OO0O0O0O

- . oo.

leJoNoNoRoNo]

ot nn

it n
o O

0
0
0.
0
0
0

IF(M .EQ. P .AND. N .EQ. Q) THEN

IF(NBUCVIB .EQ. 1) THEN
VIBRATIONS PROBLEM - WE ARE LOOKING FOR THE NATURAL
FREQUENCIES

BVOMASS = -1.0 * (
1AxB*12BARPR/4.0 )
CVOMASS = -1.0 % (
1-PI*AxI3BARPR*Q/4.0 )
AWMASS = -1.0 % (
1-PI*BXxI5BAR¥P/4.0 )
BWMASS = -1.0 % (
1-PI*AxI5BAR*Q/4.0 )
CWMASS = -1.0 x (
1(16%PIXk2kAXKZIKI7TRQRX24+16XPIkk2%XBRk2%]T 7XP kK2 +9XAKK2 XBxkk2 KH k%
14%11)/(AxBxH*%4)/36.0 )
AJXMASS = -1.0 % (
1AXxBXxI4BAR/4.0 )

CJXMASS = -1.0 x (
1-PI*BxI5BARXP/4.0 )
BJYMASS = -1.0 x (
1AXxB*I4BAR/4.0 )

CJYMASS = ~-1.0 % (

aa o a
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1-PI*A*15BAR*Q/4.0 )

ELSE

BUCKLING PROBLEM - WE ARE LOOKING FOR THE CRITICAL BUCKLING
LOADS
BVOMASS =
CVOMASS = 0.0
AWMASS
BWMASS
CWMASS
1-PI**2%Bx
AJXMASS
CJXMASS
BJYMASS
CJYMASS
ENDIF

nun
1 OO

ELSE

BVOMASS
CVOMASS
AWMASS
BWMASS
CWMASS
AJXMASS
CJXMASS
BJYMASS
CJYMASS

" an
©00
[oNo R

fmunnn
cooo;
SCOO0O0
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MASS(I,J) = AUOMASS

MASS(I,J + MMAX *x NMAX) = BUOMASS

MASS(I,J + 2 x MMAX * NMAX) = CUOMASS

MASS(I,J + 3 x MMAX * NMAX) = EUOMASS

MASS(I,J + 4 *x MMAX x NMAX) = GUOMASS

MASS(I + MMAX x NMAX,J) = AVOMASS

MASS(I + MMAX * NMAX,J + MMAX *x NMAX) = BVOMASS

MASS(I + MMAX * NMAX,J + 2 x MMAX * NMAX) = CVOMASS
MASS(I + MMAX x NMAX,J + 3 % MMAX * NMAX) = EVOMASS
MASS(I + MMAX x NMAX,J + 4 * MMAX *x NMAX) = GVOMASS
MASS(I + 2 x MMAX * NMAX,J) = AWMASS

MASS(I + 2 x MMAX x NMAX,J + MMAX x NMAX) = BWMASS
MASS(I + 2 *x MMAX *x NMAX,J + 2 x MMAX x NMAX) = CWMASS
MASS(I + 2 *x MMAX *x NMAX,J + 3 *x MMAX x NMAX) = EWMASS
MASS(I + 2 * MMAX * NMAX,J + 4 *x MMAX % NMAX) = GWMASS
MASS(I + 3 *x MMAX x NMAX,J) = AJXMASS

MASS(I + 3 * MMAX x NMAX,J + MMAX x NMAX) = BJXMASS
MASS(I + 3 *x MMAX * NMAX,J + 2 x MMAX *x NMAX) = CJXMASS
MASS(I + 3 * MMAX * NMAX,J + 3 * MMAX * NMAX) = EJXMASS
MASS(I + 3 * MMAX * NMAX,J + 4 x MMAX % NMAX) = GJXMASS




Qa0

aoaaaa O

40

50

MASS(I + 4 * MMAX *x NMAX,J) = AJYMASS

MASS(I + 4 *x MMAX *x NMAX,J + MMAX x NMAX) = BJYMASS
MASS(I + 4 x MMAX x NMAX,J + 2 % MMAX * NMAX) = CJYMASS
MASS(I + 4 *x MMAX x NMAX,J + 3 *x MMAX * NMAX) = EJYMASS
MASS(I + 4 *x MMAX *x NMAX,J + 4 *x MMAX % NMAX) = GJYMASS
J=J +1

CONTINUE

I=14+1

J=1

CONTINUE

T - = _ ——— T P ———— i . T —— — S — ——n o ———— T . i T S i —— ——— ———— " ———— — ———

CALL THE IMSL LIBRARY SUBROUTINE. USE THE MASS AND STIFFNESS
MATRICES AS INPUT AND FIND THE EIGENVALUES AND EIGENVECTORS.
CALL DGVCRG(MSIZE, STIFF,MSIZE, MASS, MSIZE, ALPHA, BETA, EVEC,
IMSIZE)

DO 40 T = 1,MSIZE

IF(BETA(I) .NE. 0.0) THEN

EVAL(I) = ALPHA(I) / BETA(I)

ELSE

EVAL(I) = (1.0D+30 , 0.0D+00)

ENDIF

CONTINUE

IF(NBUCVIB .EQ. 1) THEN

PRINT OUT THE FIRST 10 MODES FOR THE VIBRATION PROBLEM

DOS0TI =1,10

REVAL = DREAL(EVAL(I))

AGEVAL = DIMAG(EVAL(I))
IF(ABS(AGEVAL) .GT. 1.0D-15) THEN
WRITE(2,115) 1

ELSEIF(REVAL .GT. 1.0D+28) THEN
WRITE(2,125) I

ELSEIF(REVAL .LT. 0.0) THEN
WRITE(2,120) I

ELSE

OMEGA = SQRT(REVAL)
WRITE(2,130) I,REVAL,OMEGA
ENDIF

CONTINUE

ELSE

PRINT OUT THE CRITICAL BUCKLING LOAD. THE CRITICAL
BUCKLING LOAD IS THE EIGENVALUE WITH THE SMALLEST ABSOLUTE
VALUE.

DO 55 1 = 2,MSIZE

IF(ABS(DIMAG(EVAL(I-1))) .GT. 1.0D-15) THEN
GO TO 55

ENDIF




IF(ABS(DREAL(EVAL(I))) .GT. ABS(DREAL(EVAL(I-1))) .AND. ABS({
1DREAL(EVAL(I-1))) .LT. 1.0D+28) THEN
WRITE(2,220) DREAL(EVAL(I-1))

ENDIF
55 CONTINUE
C
ENDIF
C
Cc PRINT OUT THE 1ST MODE OF THE DEFLECTION, W(X,Y), ALONG THE
C MIDLINES OF THE PANEL: X = A/2 AND Y = B/2
C
g PRINT OUT THE W EIGENVECTOR, CMN
II =1
WRITE(Z2,500)
WRITE(2,510)
MNWMIN = 1 + 2 *x MMAX * NMAX
MNWMAX = 3 *x MMAX x NMAX
DO 400 I = MNWMIN, MNWMAX
REVEC(II) = DREAL(EVEC(I, 1))
AGEVEC = DIMAG(EVEC(I, 1))
IF(ABS(AGEVEC) .GT. 1.0D-15) THEN
WRITE(2,520) I,II,REVEC(II)
ELSE
WRITE(2,530) I 11I,REVEC(II)
ENDIF
II = 11 + 1
400 CONTINUE
(o
g DETERMINE W(X=A/2,Y)
ASTEP = A / 50.0
BSTEP = B / 50.0
XCOORD = A/ 2.0
YCOORD = 0.0
WRITE(2, 540)
WRITE(2, 542)
801 WMODE = 0.0
JJJ = 1
DO 470 M = 1,MMAX
DO 472 N = 1,NMAX
WMODE = WMODE + REVEC(JJJ)*SIN(M*xPI*XCOORD/A)*SIN(N*PIxYCOOR
1D/B)

JJJ = JJJ + 1

472 CONTINUE

470 CONTINUE
WRITE(2,550) YCOORD, WMODE
YCOORD = YCOORD + BSTEP
IF(YCOORD .GT. B) THEN
GO TO 800
ELSE
GO TO 801




ENDIF
00 YCOORD = B / 2.0
DETERMINE W(X,Y=B/2)

——
OO0

XCOORD = 0.0
WRITE(2, 560)
WRITE(2, 570)
610 WMODE = 0.0
JdJ = 1
DO 480 M 1, MMAX
DO 482 N = 1, NMAX
WMODE = WMODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*YCOOR
1D/B)
JJJ = JJJ + 1
482 CONTINUE
480 CONTINUE
WRITE(Z2, 550) XCOORD, WMODE
XCOORD = XCOORD + ASTEP
IF(XCOORD .GT. A) THEN
GO TO 850
ELSE
GO TO 810
ENDIF

tu

115 FORMAT(/, 89X, 13, 11X, ’EIGENVALUE IS COMPLEX’)
120 FORMAT(/, 9X, 13, 11X, *'EIGENVALUE IS NEGATIVE’)
125 FORMAT(/, 9X, 13, 11X, *EIGENVALUE IS INFINITE’)
130 FORMAT(/,9X,13,10X,D20.13,12X,D20.13)
200 FORMAT(/, 9X, I3, 10X, D20.13)
220 FORMAT(//,5X, ’CRITICAL BUCKLING LOAD = ’,1X,D20.13)
500 FORMAT(//,5X,’W EIGENVECTOR, CMN, FOR 1ST MODE’)
510 FORMAT(//,5X,’M,N’, 10X, *CMN’)
520 FORMAT(/, 5X, 14, 2X, I4,12X,D20. 13, 3X, *COMPLEX’)
530 FORMAT(/, 5X, 14, 2X, 14, 12X,D20.13)
540 FORMAT(//,5X, 'DEFLECTION, W(X=A/2,Y)’)
542 FORMAT(//,5X,’Y (IN.)’,10X, ’W(A/2,Y) (IN.)’)
550 FORMAT(/,5X,F6.2,11X,E15.8)
560 FORMAT(//,5X, ’DEFLECTION, W(X,Y=B/2)’)
570 FORMAT(//,5X,’X (IN.)’, 10X, ’W(X,B/2) (IN.)’")
850 RETURN
END




The next listing is the code for clamped boundary conditions.
As stated in chapter 111, the only part of the program that is
boundary condition dependant is subroutine “GALERK" (with the

exception of a few format statements in the main program).

149




—*

xxkx%% Clamped Boundary Condition *¥¥xxxx

SUBROUTINE GALERK(PI,R,H,A,B,Al11,A12,A22, A16, A26, A66, A44, A45
1,A55,D11,D12,D22,D16, D26, D66, D44, D45,D55,F11,F12,F22,F16,F26
2,F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22,J16,J26
3,J66, NBUCVIB, MMAX, MSIZE, RHO, STIFF, MASS, BETA, ALPHA, EVAL, EVEC,
4MSIZESQ, REVEC)

c

C THIS SUBROUTINE GENERATES THE GALERKIN EQUATIONS AND FORMS

C THE MASS AND STIFFNESS MATRICES. THEN IT CALLS DGVCRG, AN

C IMSL SUBROUTINE WHICH SOLVES THE EIGENVALUE PROBLEM:

c [STIFF]}{X} = (OMEGA"2 OR N1BAR)[MASS]{X}.

G e e e e e —————— e e
DOUBLE PRECISION PI,R,H,A,B,All,A12,A22,A16,A26, A66, A44,
1A45, A55,D11,D12, D22, D16, D26, D66, D44, D45,D55,F11,F12,F22,F186,
2F26,F66,F44,F45,F55,H11,H12,H22,H16,H26,H66,J11,J12,J22, J16,
3J26,J66,STIFF(MSIZE, MSIZE), MASS(MSIZE, MSIZE), AUO, BUO, CUO, EUO
4, GUO, AVO, BVO, CVO, EVO, GVO, AW, BW, CW, EW, GW, AJX, BJX, CJX, EJX, GJX,
5AJY, BJY, CJY, EJY, GJY, AUOMASS, BUOMASS, CUOMASS, EUOMASS, GUOMASS, -
6AVOMASS, BVOMASS, CVOMASS, EVOMASS, GVOMASS, AWMASS, BWMASS, CWMASS
7, ENMASS, GWMASS, AJXMASS, BJXMASS, CJXMASS, EJXMASS, GJXMASS, AJYMA
8SS, BJYMASS, CJYMASS, EJYMASS, GJYMASS, RHO, I2BARPR, I3BARPR, I5BAR
9,17,11,I4BAR

INTEGER P,Q

C THESE VARIABLES NEEDED FOR THE IMSL EIGENVALUE SOLVER.
DOUBLE PRECISION BETA(MSIZE), REVAL, OMEGA, AGEVAL, AGEVEC,
1REVEC(MSIZESQ)
DOUBLE COMPLEX ALPHA(MSIZE), EVAL(MSIZ2E),EVEC(MSIZE,MSIZE)

C _______________________________________________________________
Cc NUMBER OF TERMS IN THE ADMISSIBLE FUNCTIONS
NMAX = MMAX -
Cc GENERATE GALERKIN EQUATIONS
I =1
J =1
DO 10 P = 1, MMAX
DO 10 Q = 1,NMAX
DO 20 M = 1, MMAX -
DO 20 N = 1,NMAX
C _______________________________________________________________
C COMPUTE STIFFNESS MATRIX ELEMENTS
Gl e e e e
IF (M .EQ. P .AND. N .EQ. Q) THEN
C
AUO = 0.0
BUO = 0.0
CUO =
1-((8%F66+4%xF12) *PXPI%%3%xQ*x%2-3%A12%B*xx2xH*%x2xPxP1) /(BXxH*x%*2%R
1)/12.0

EUO =




1-((4%AXKZXAGEXPI*k2*¥Q*k*2+4 %A1 1kBRk2XPkk2KPI**k2 ) XR¥k %2 +A%*x2XD6
16%PI**2%xQ%*2) /( AXBX*R*%2) /16.0

GUC =

1-((4*%A66+4*%A12) *¥P*PIx*2*%QXR**2-DE6*PXPI*Xx2%Q) /R*x*2/16. 0

AVO = 0.0
BVO = 0.0
CVO =

1-(4*A*F22*PI**3*Q**3-3*A*A22*B**Z*H**Z*PI*Q)/(B**Z*H**Z*R)/l
12.0

EVO =
18684*A66+4*A12)*P*PI**Z*Q*R**Z—DSS*P*PI**Z*Q)/R**2/16.0
1-((4%AXX2%kA22XPI%X%X2%Q**2+4XA66XBXxXx2kPXxXx2%xPI%%2 ) xR*k*2+Bx%2%D6
16%P%x%x2%PI%%x2) /( AXBxR*%2)/16.0

AW 0.0

BW
CW
1-((16%AXk4X¥H22XPIkx4*Qx%¥4+( (64XA**x2%kB¥x*k2XxHE6+32KAX%k2xB%kx2%H1
12)%Pkk2XPI%kk4+(IKAKKLKAG4KBRR2XHKkKG~T2XA% k4 XBx*k2%kD44*kH*x*2+14
14%xAXX4%xBx%x2%xF44 ) XPI%x%x2 ) *¥QkXx2+16%kBxk4XxH11%xPxk4*xPIx%4+ ( ORAXKZ %
1AS5XBXXdkH* k4 -T2%A%%k2XBKk4XDESKHKkKk2+144%kAXK2XBRkKk4XF5E ) kPKk2 %
1PIx%2 ) XR¥kXx2+16XAXk4%J22%XPI*k%k4%xQ%x %4+ ( 16XkA%*k2%XBXx*x2%xJ66*XPxk2%PI
1Xk4-24%KAXK4XBXX2XKF22%kHXk%k2%XP I %%x2 ) XQX X2 +IXAXKLKAZ 2 XBXkgkH%%Xq )Y/
1 (Ax%3*%Bx%x3xH%x%x4%xR*%x2)/36.0

EW =

1-((8%F66+4%xF12) %PX*PI*%x3%Q*x%2-3%A12%xBxk2*xH**2%PXxPI) /(BXHX%2%R
1)/12.0

GW =

1-(4%A¥F22*¥PIkk3I*kQ*kXx3-3kAXA22%Bkk2xHk*2%PI*Q) / (BXx*x2XxH*x*2%xR) /1
12.0

AJX =
1-(((16%Axx2XHE6+9kAX%k2XDEEXHX%K4-24 %A% k2 XFE6XKHK k%2 ) kP T %%k2%Q*k%2
1+(16%BXx%x2%H11+9%Bk%2%D11%kH*%4-24%B*xx2%F11XH*%x%x2)XPxx2XPI%x%x2+9
1%AXKZ2ZKASEKBRRk2XKHXKG-T2XAKK2XkBXXk2KkDS5XHRk%kZ2+144%XAXKZAkBXXk2%KF55 )
1XkR¥k*2+( 16kAX*2XJE6-24%AXK2KHX X2 XHBE6 +FXA*k2XFB6XKH*%k4 ) kP I%kk2%Q
1;3%)/(A*B*H**4*R**Z)/36.0
1-(((16%AXX2XH26+9%AXX2XD26XH*%X4-24%xAXX2XF26XH% %2 ) XPT%k2%QXx*2
14+(16%BXx%2*¥H16+9%BXx%x2%D16*¥H%*%4-24%B**2%F16kHX%*2 ) XPkx2%kPI*%2+9
1RARK2KALDXkBRk2KH)kk4 -7 2XAKK2KkBXkXk2XDAEXHKkk2+144%AXX2XBX%k2%XF45 )
1KkR*%2+( 16%AX%k2%J26-24 %A% X2kHX%k2XH26 +QkAXK2XKF26xH*k%k4 ) kP I %%2%Q
1%%2) / ( AXBXxHXxXx4%R*x%*2) /36.0

0.0

CJX = 0.0
EJX = 0.0
GJX = 0.0
AJY =

1-(((16%AX*2xH26+9%AXx*2XD26kHXk4-24kKAXK2XF26 XHX %2 ) XP I k%2 %Q*%2
1+4(16%B*%2*¥H16+9%B**2XD16XH*%4-24%B**2XF16XH*%2 ) XPXx*x2%PI*%*2+9
1xAXX2XA45¥BXxXk2XHX%k4-T2XkAXKk2XBkXk2%D45KH*%2+144%AXX2XB*%x2*F45)
1XRAk%2+ ( 16%AXK2%kJI26~24XAXK2XHKkXx2KH2E+9XAXKk2XF26XH* k4 ) kPI*%k2%Q
1x%x2) /( AXBXHXX4%Rx%2) /36. 0

BJY =
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1-(({16*%AX*2X¥H22+9%kA%*2¥D22KH* k4 ~24XA%X2KF22XH*%X2 ) XP T Xk2XQX X2
1+(16%B**2*%HE66+9%B**2*D66XH**4-24%Bk X2 *¥F66XxH**2 ) kPxk2XxP1%*%2+9
1xA%K2XA44¥BXX2KHX*4 -T2 kAKX 2KkBXk2XD44XHX %2 +144XAKK2%BXxX2%*F44)
1XR*K2+( 16 %AKK2%J22-24XAXK2KHXX2KH22 +GKAXKk2XF22XH%%4 ) kPI%x*2%Q
1%%2) / (AXB*H*%4*R*x%2) /36.0

CJY = 0.0
EJY = 0.0
GJY = 0.0

ELSEIF (M .EQ. P .AND. MOD(N + Q,2) .NE. 0) THEN

AUO =
1-(3*D16*H**2-4%F16 ) ¥N*¥P*PI*Q/ ( (2XH**2%Q**2-2XHXx*k2XN**2 ) *R)
BUO =

1-((3*%D66+6%D12) XH**2-4X¥F66-8%F12) XNXP*PI*Q/ ( ( 6 XH*%2%*Q**2-6%H

1%%2%kN%X%k2) %R)
CUO = 0.0
EUO = 0.0
GUO = 0.0
AVO =

1-((6%AXk2XD26XHX*2-BXAX¥2%F26 ) KN¥PI*Q*k*2+ (4*B**2%F16~-3%Bxk2x
1D16XHX%2 ) XN*Px*2%P1) /( ( 6 %AXBXHX*2%Q**2 -8 kAXBKXH*x*2XN*%2 ) XR )
BVO =
1-((6*AX*2XD22XH¥%2-B8XA%*2%F22 ) kN*PI*Q**2+ ( 4XBX*2XF66 -3 XBx*%2 %
1D66XH**2 ) XN P**2%P1) / ( ( 6XAXBXH*X%2*%Q**2 -6 xAXBXHX*x2kN*%2 ) ¥R )

CVO = 0.0
EVO = 0.0
GVO = 0.0
AW =

1((( (4BXBX*2%H16-36XBKk¥k2KXF16XHAK2 ) kNKkPH¥2+( 16*AKK2KH26 12 kAKX
1Z2*%F26%H%%2 ) kKN*k%k3 ) kPI k%24 ( FKAXXK2KA45XKBRkKk2 kHKk%k4 -7 2KA%%k2%kB%k%2 %D
145XH*%2+144%AXK2KBR*2KF45 ) KN ) kQKR**2+( ( 16XA**2%J26—12XAKX2KH
1kx2¥H26 ) KNX K IKPIHX2 +( 9KAXK2KBRK2 kD2 KHK %4~ 1 2K AKK2 KBRK2KF26 XK
1%k2) %N ) %Q) / ( ( 9KAXBXX2XHX*k4*Q¥*2 -Gk AXBRK2kHAKk4KkNKk%2 ) kKR**%2 )

BW =

1((((32%xBxx2xHB6+16%B**2%H12+(-24%B*x*2%XF66-12*%BXx%2XF12)%H%x*2)
1AN*P**2+( 16XAXX2XH22-12X%A*X2XF22KH*%2 ) kN*%3 ) XPI%%2 + ( 9KkAKK2XA
144%BXx*2KHX k472 %A%%2*BXx*2%D44 ¥H**2+144%kAxk2%Bkk2XF44) %N ) *Q*R
1X%2+ ( (16XKAXK2%xJ22-12XA%X2KH*Kk2KH22 ) kNRkXIKP I kK2 + ( 9KkAKK2 KBk X2 %
1D22%H**4-12%AX*k2XBXx*2XF22XxH*%*2 ) %N ) *Q) / ( (9¥A*BXXx2XH*%x4%Q**2-9
1XAXBX%x2kHXx*4XN*%*2 ) XR*k*%2 )

CW =0.0

EW

GW

AJX
BJX
CJX
1-((((48%Bx%x2%H16-36*%B**2XF16%H*%2 ) XN*PX*2+( 16 kAXx*2*H26-12 %A%
1%k2*F26%HX%2) XN*%3 ) ¥PI%x*k2+ ( 9KAXK2XA45KBRKk2KH*k %4 -7 2KAKXK2KB*k2 X
1D45XH*%*2+144%A%K2XBX*2XF45) *N ) ¥Q¥XR*k2+ ( (16 %AX%2%J26~12KAXK2 %
1Hx%2%H26 ) XN kIXkPI*%k2+ ( 9KkAXK2KkBhkk2%D26XHX %4 -1 2KAKK2kBXX2XF 26 %
1Hx%2)xN) *Q) / ( ( 9*AXB**2 xHk k4 %Q*k k2 -Gk AKBR*2 KHkk4RN*%2 ) kR¥*2 )

0.0

o
o
o
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EJX =
1(3*%D16*¥H**2-4%F16 ) *N*PXxPI1*Q/ ( ( 2*XH*%x2%Q%%2-2kH**k2*N*x%2 ) %*R)
GJX =
1-((3*%Bxx2%D16XH*x%2-4%BXx%2%F16 ) XxPx%2+ ( 8XA%*2%¥F26 -6 %A%x%x2xD26 *xH
1**2)*N**2)*PI*Q/((G*A*B*H**Z*Q**Z—G*A*B*H**Z*N**Z)*R)

AJY = 0.0

BJY
CcJY
1-((((32%B**2%HE6+16%B**x2%H12+( -24%B%x*2%FB86-12%B*x*2%F12 ) xH%*%2
1) kNXP%X2+ (16 %AXXZ2%H22-12%A%%2%F22XH*%2 ) kN*k*3 ) XPIHk2+ ( GKkAKKD X
1A44XBXX2%KHX k4 -7 2KAXK2XBk*k2%D44*kH* %2+ 144%AXk24xBkk2%F4d4 ) *N ) *Qx
IRX%2+ ( (16%AXK2%XJ22-12 %A%k 2XH*%2%H22 ) ANk *3KkPI*x%2+ ( GKAKXK2 XBX*2
1*D22*H**4—12*A**2*B**2*F22*H**2)*N)*Q)/((9*A*B**2*H**4*Q**2-
19%AXBXk2KkHk k4 XkNXk2 ) kxR%x%2)

EJY =
1((3%D66+6%D12)*H**2-4%xFE66-8%F12 ) kNkPXxPI%Q / ( { 6%H%%2%Q% %2 -6 %H %
1%2%xN%%x2 ) %R)

GJY =
1-((3%BXx%x2%DBE*XH*%x2-4%BXxX2%FE66 ) ¥PXxk2+ (8XxA%k2XF22-6%xA%x*2%xD22%H
1**2)*N**2)*PI*Q/((S*A*B*H**Z*Q**Z—S*A*B*H**Z*N**Z)*R)

0.0

it

ELSEIF(MOD(M + P,2) .NE. O .AND. N .EQ. Q) THEN

AUO =
1-(3*AXDE6XH**2-4XAXFE6 ) kMXPI*Q**2 / ( ( 2XB*HXX2%Px%2-2%BXH**2XM
1%%2)Y%R)

BUO =
1-(3%AXD26*%HX*2-4%AXF26 ) kM*kPIkQ* %2 / ( ( 2kBXHAK2XPh*2 -2 ¥xBKHX*%2*M
1%x%2)%R)

C0O = 0.0
EUO = 0.0
GUO = 0.0
AVO =

1-(3%D66*H**2-4%FE6 ) XMXP*PI1*Q/ ( ( 6XH*%2XxP*%2-6XH*%x2XM*%x2 ) %*R)
BVO =
1-(3*%D26XHXx*2-4XF26 ) *M*P*P1*Q/ ( ( 6 XHX*2XP**%2~6XHX%2XM*%*2 ) xR
CvO = 0.0

EVO = 0.0
GVO = 0.0
AW =

1(((32%A%%2*¥HEE6+16%AX*2XH12+(-24%A%%2%xFE6-12%A%%k2%F12 ) kH*%2 ) %
IMXPXPI*Xx2%Q%%2+( 16%B%x%2%H11-12%B*%2%F11%H%%2 ) kMAk3kPkPI*%k2 +(
19%kAXX2XA5HXkBXKk2 kHXK4—-T2XAKK2%kBXX2KkDEEXHK%k2+144%AXX2%Bk%k2%xF55
1) %M%P)XRXxk2+( 16%A%k2%J66-12%A%%k2%kH*x%x2%kHB6 ) kMAkPXkP I *x%x2%Q%%2) /(
1(9*A**2*B*H**4*P**2—9*A**2*B*H**4*M**2)*R**2)

BW =
1(((4B*AX%2%H26-36%AX%2%F26XH%*%2 ) *M*PXxPT*x%x2%Q*xx2+( 16%B%x%*2%xH16
1-12%Bxx2%F16XH*%2 ) xMk k3 XPkPI%%k2 + ( kA% %2 XkA45XxBkk2 kH%k %4 -7 2 kA%X
12%Bx%2%D45%H%%2+4+ 144 %A%%k2XxBXx%2%F45 ) *M*kP ) kR**2+ ( 16%A%*2%J26-12
l*A**Z*H**z*HZS)*M*P*PI**Z*Q**Z)/((Q*A**Z*B*H**4*P**2—9*A**2*
1B*H**4*M**2)*R**2)

CW = 0.0
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EW = 0.0
GW = 0.0
AJX = 0.0
BJX = 0.0
CJX =

1-(((32%A%x2%HE66+16%A*%x2%kH12+(-24%AXxXx2XF66—-12%AX*2XF12)XxH**x2)
1xMAkPXPIAk2%Q* %2+ ( 16XBk*2%xH11-12%B*x*k2X%F11kH*%2 ) kMxk3*kPXxP] %2+
1(9kAKX2KAE5XBXk2XHKk%4-T2XkA%%k2*BkXx2%kD5EXHKk%k2+144%A%XK2XBXx2%*F5
15) %M*P) XR*%2+( 16 %AX*2%xJ66-12%A%xX2XHX*2XHE6 ) kMKPXPI*k2*Q*x%2) /
1( (9XARKZKBXH k4 kP2 -G kAKK2 kBRHKkk4kM*k%k2 ) kR*%2 )

EJX =
1(3*%AXDEEXHX*2-4*AXFE66 ) ¥P*PI*Q**2 / ( ( 2XBXHX*%2XPX%2—2XBXxH* %2 *Mx
1%2)*R)

GJX =
1(3*%DE6*H**2-4%F66 ) kM*kPXPI1%Q/ ( ( 6XH*X%2%PXx*2-6kH%)k2%kM*%2 ) %R )

AJY = 0.0
BJY = 0.0
CJY =

1-(((48*%A%%2%H26~36%A%*2XkF26KH* %2 ) kMkPkPT%x%x2%xQ%*2+( 16%B*xx2%xH1
16-12%B**2%F16XH**%2 ) XM¥XIXPkPI kX2 +( IKkAKK2kA45XBKX2XH*%4~T72%A%
1x2%Bx*2%D45kH* k2 +144%AX%2XB*%2XF45) kMXP ) kRXx*2+( 16X%A**2%xJ26-1
12%AXK2XKHkk2%H26 ) kMAPRP I %%2%Q%%2 ) / ( ( 9k A* k2 kBkH*kk4%kPkk2-GkA%k%K2
1%xBxHX k4 XxMk%x2 ) kR%%2)

EJY =
1(3*AxD26XH*%2-4%AXF26 ) kPXkPI*Q*%*2 / ( ( 2%xBX*HXX2%PXx*2-2XBXH**2XxM*
1%2)*R)

GJY =
1(3*D26*H**%2~-4%F26 ) kMXP*PI*Q/ ( ( 6 XH*k2XP%*2 -G kHXk2XM**2 ) XR)

ELSEIF(MOD(M + P,2) .NE. O .AND. MOD(N + Q,2) .NE. O) THEN

AUO = 0.0
BUO = 0.0
CU0 =

1((16%BXx*2%XF16XMANKP*k%k2+24%kA%%k2%kF26*kMAkN*%k3+8%kBxx2%F16xMkxk3 %N )
1XPIkk2-12KAXK2XA26XBRk2KkHX%k2XkMAN ) %Q/ ( ( ( 3kAXBX*2*H**2XxP%x%x2-3%
1 AXBkok2xH Aok 2 kM*kx2 ) kP T kQ*k k2 + ( 3kAKB kK2 KH Kk 2 kMK k2 kN *kk2 -3k AKB kK2 X
1HX%2%kN*%2%Pxx%2 ) %PI)*R)

EUO =
1(4xA16XNXPXx%2+4%A16XM¥xk2%N)*Q/( (PXx%2-Mxk2 ) kQ*k%x2 ~N**2xPx%2+Mx
1%2%N%x%*2 )

GUO =
1(4X%A16XBRX2XMAPk%k2+4%kAKK2KAZ6XMARN%k%2 ) %Q/ ( (AXB*RkPx*k2-AXBxkM* %2 )
1xQk k2 ~ AXBRNKkK2XP k%2 +AXBXMkk2KN*%k2 )

AVO = 0.0
BVO = 0.0
CVo =

1(16%AXX2%XF26*kMXNXPXPI*%x2%Q%*2+ ( 8 XAX%k2XF26 kMXN*x%3-8%XBxk2%F16%
IMRKI RN ) kPKPI%%2-12%A%%k2xA26%Bxx2kH¥kk2XMAN*KP) /( { ( 3XxA%%2%xBXH*x%
12X%Pk%2-3kA%K2KkBRHKK2KMKk2 ) kP T kQ% k2 + ( 3KkAKK2kBKRH® k2 kMak2 kN ¥k —
13%AXK2XBXH %% 2 XN*k%2%P*x%2)*PI)%*R)

EVO =
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1(4*%AxX2xA26*NXP*Q¥*Z2+4XA16*BXX2*M¥X2XNXP ) / ( (A¥B*PX%2-AXBXM¥*
12) %Q* %2 -AX¥BXNX%x2¥P*x%k2 + AXBXMk X2 kN*%2 )

GVO =
1(4*%A26*MXP*QXx%2+4%A26 kMANXk2XP ) / ( ( Pk%k2-MX*%2 ) kQ*k k2 ~N**%2kP*k*%2+
IMXX2XN*%2 )

AW = 0.0
0.0

Qw
ZZE
rn

1(((256%A%X2XH26 ¥MAkN*k*3+256%B%x%2%kH16%kM*k k3 XN ) kP*kPI%%2+( 72kA%%x2
1XA45%BXRk2%kH%%k4-576%kA%%k2%Bk%k2%xD45XxH*x*2+1152%kA%xX2%BXx*x2%F45 ) XMx
INXP ) ¥Q*¥R¥x%k2+( 128%A%x*%x2%J26 ¥MAkN*)k3kPXPI%%k2-96XA%%k2%xBx%X2%xF26XHx
1%2*MANKP ) ¥Q) / ( ( ( GKAKXK2XBHK2KHkKkQkPrk2 -Gk AKKDKBK K2 KH Kk KMk %2 )
1*Q**Z—Q*A**Z*B**Z*H**4*N**2*P**2+9*A**Z*B**Z*H**4*M**2*N**Z)
1%kR*%2)

EW =
1((BXAX%XZ2XF26%N*%3+8%Bkx2%xF168kM¥xX2%XN ) kPXxPIk%k2-4XAXx%2%A26%xB*k%2
1*H**2*N*P)*Q/(((A*B**Z*H**Z*P**Z—A*B**Z*H**Z*M**2)*PI*Q**2+(
1AXBX k2 xHX k2 kMkkx 2 XNk k2 - AkBxk2 kHxk2kN*k*k2XP*%2) %P1 ) *R)

GW =
1((24%A%%Z2%xF26%XMXN*%2-8%Bxk2*F16XM*¥%*3 ) XP*xPI*x%2—-12%A%%x2X%xA26kxBx
1*2*H**2*M*P)*Q/(((3*A**Z*B*H**Z*P**Z—S*A**Z*B*H**Z*M**Z)*PI*
1Q**2+(3*A**Z*B*H**Z*M**Z*N**Z—S*A**Z*B*H**Z*N**Z*P**Z)*PI)*R
1)

AJX =
1(128%H16+72%D16*%H*%4-192%F16%H*%2 ) xMkN*P*Q/ ( ( 9kxHXx%4%P**2-9%H
1k 4 kM k2 ) kQK K2 -G kHKk K4 KNK k2 kP kk2 +3KkHX k4 XMAk2AkN*k%2 )

BJX =
1(64%H66+64%H12+(36%D66+36%D12) ¥H*%*4+(-96%F66-96%F12) kH%*%2 ) *kM
1kKN*P*Q/ ( ( 9kH* k4 %P k%2 -9kH% k4 kMXk2 ) ¥Q*k %2 -9 kH*k kg kN*%k2 kP ¥x%2 +9%Hx

1% 4XM* X2 HN*%2 )
CJX = 0.0
EJX = 0.0
GJX = 0.0
AJY =

1(64%H66+64%H12+(36%D66+36%D12) kH**4+(~-96%F66-96%F12) xH*%%x2 ) *M
1XN*P*Q/ ( ( 9XHKX k4 ¥Pkk2 ~GkH Xk kMk k2 ) kQk*k2 — G kHkk 4 kN ¥k 2 kP * %2+ XHX
1k 4kM*k2 KN X %2 )

BJY =
1(128%H26+72%D26%H%%4-182%F26%H*%2 ) kMXN*kP*Q/ ( ( 9kHXxXx4*Px%2-9xH
1Rk 4 RMRKD ) KQA K2 — G RH KK QKN Kk 2 KP k%2 +0KH Kk g kMAKk2KN*%%2 )

CJY = 0.0

EJY
GJY

i
o
o

ELSE

AUO
BUO
Cuo
EUO
GUO
AVO
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BVO = 0.0
CVOo = 0.0
k EVO = 0.0 -
GVO = 0.0
AW = 0.0
BW = 0.0
CW =0.0
EW = 0.0
GW = 0.0
AJX = 0.0
BJX = 0.0
CJX = 0.0
EJX = 0.0
GJX = 0.0
AJY = 0.0
BJY = 0.0
CJY = 0.0
EJY = 0.0
GJY = 0.0
ENDIF
C _______________________________________________________________
C STORE THESE TERMS IN THE STIFFNESS MATRIX
c _______________________________________________________________
STIFF(I,J) = AUO
STIFF(I,J + MMAX x NMAX) = BUO
STIFF(I,J + 2 * MMAX % NMAX) = CUO
STIFF(I,J + 3 x MMAX *x NMAX) = EUO
STIFF(I,J + 4 x MMAX x NMAX) = GUO
STIFF(I + MMAX * NMAX,J) = AVO
STIFF(I + MMAX x NMAX,J + MMAX x NMAX) = BVO
STIFF(I + MMAX *x NMAX,J + 2 x MMAX *x NMAX) = CVO
STIFF(I + MMAX x NMAX,J + 3 * MMAX % NMAX) = EVO
STIFF(I + MMAX x NMAX,J + 4 x MMAX * NMAX) = GVO
STIFF(I + 2 * MMAX *x NMAX,J) = AW
STIFF(I + 2 x MMAX x NMAX,J + MMAX *x NMAX) = BW
STIFF(I + 2 * MMAX *x NMAX,J + 2 x MMAX x NMAX) = CW
STIFF(I + 2 % MMAX % NMAX,J + 3 x MMAX * NMAX) = EW
STIFF(I + 2 *x MMAX * NMAX,J + 4 *x MMAX * NMAX) = GW
STIFF(I + 3 x MMAX x NMAX,J) = AJX
STIFF(I + 3 * MMAX * NMAX,J + MMAX * NMAX) = BJX
STIFF(I + 3 *x MMAX x NMAX,J + 2 *x MMAX x NMAX) = CJX
STIFF(I + 3 * MMAX * NMAX,J + 3 *x MMAX * NMAX) = EJX
STIFF(I + 3 *x MMAX * NMAX,J + 4 *x MMAX * NMAX) = GJX
STIFF(I + 4 x MMAX x NMAX,J) = AJY
STIFF(I + 4 *x MMAX *x NMAX,J + MMAX * NMAX) = BJY
STIFF(I + 4 x MMAX x NMAX,J + 2 *x MMAX * NMAX) = CJY
STIFF(I + 4 x MMAX x NMAX,J + 3 *x MMAX x NMAX) = EJY
STIFF(I + 4 x MMAX * NMAX,J + 4 x MMAX * NMAX) = GJY
G e e e e e
C COMPUTE MASS MATRIX ELEMENTS
C _______________________________________________________________

C FIRST CALCULATE THE MASS MOMENTS OF INERTIA.




aoa O

I2BARPR = RHO * H*%3 / (15.0 * R)
I3BARPR = RHO * Hx*3 / (60.0 * R)
ISBAR = RHO * H*%3 % 4.0 / 315.0

17 = RHO x H*x7 / 448.0

I1 = RHO x H

I4BAR = RHO * H*%3 x 17.0 / 315.0
AUOMASS = 0.0

BUOMASS = 0.0

CUOMASS = 0.0

EUOMASS = 0.0

GUOMASS = 0.0

AVOMASS = 0.0

EVOMASS = 0.0

GVOMASS = 0.0

EWMASS = 0.0

GWMASS = 0.0

BJXMASS = 0.0

EJXMASS = 0.0

GJXMASS = 0.0

AJYMASS = 0.0

EJYMASS = 0.0

GJYMASS = 0.0

IF(NBUCVIB .EQ. 1) THEN

VIBRATIONS PROBLEM -~ WE ARE LOOKING FOR THE NATURAL

FREQUENCIES

IF(M .EQ. P .AND. N .EQ. Q) THEN

CVOMASS = -1.0 x (
1-A*I3BARPR*PI*Q/4.0 )

CWMASS = -1.0 x (
1(16*A**2*I7*PI**2*Q**2+16*B**2*I7*P**2*PI**2+9*A**2*B**2*H**
14%I1)/(AXBxH*%4)/36.0 )

AJXMASS = -1.0 x (
1AXB*xI4BAR/4.0 )

BJYMASS = -1.0 % (
1A*B*I4BAR/4.0 )

BVOMASS = 0.0

BWMASS = 0.0

CJYMASS = 0.0

AWMASS = 0.0

CJXMASS = 0.0

ELSEIF(M .EQ. P .AND. MOD(N + Q,2) .NE. 0) THEN

BVOMASS = -1.0 * (
1-AXB*I2BARPR*N/ (PI*Q**2-Nx*2*PI) )

BWMASS = -1.0 % (
1AXI5BARXN*Q/ (QX%*2~N*%2) )

CJYMASS = -1.0 % (
1-AxI5BARXN*Q/ (Q%*x2-NXx*2) )

CVOMASS = 0.0

CWMASS = 0.0

AJXMASS = 0.0
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aaoa o

BJYMASS = 0.0

AWMASS = 0.0

CJXMASS = 0.0

ELSEIF(MOD(M + P,2) .NE. O .AND. N .EQ.. Q) THEN
AWMASS = -1.0 x (

1B*I5BARXMXP / (P*%2-Mx%*2) )

CJXMASS = -1.0 x (

1-BxI5BARXMXP/(Px%2-M*%x2) )

CVOMASS = 0.0

CWMASS = 0.0

AJXMASS
BJYMASS
BVOMASS
BWMASS = 0.0
CJYMASS
ELSE
BVOMASS
CVOMASS
AWMASS
BWMASS
CWMASS
AJXMASS
CJXMASS
BJYMASS
CJYMASS
ENDIF

nn ] [ ]

1w
OO0
SO0

Hwanun
opop. .
[eXoRoRe

ELSE

EgCKLING PROBLEM ~ WE ARE LOOKING FOR THE CRITICAL BUCKLING
ADS

BVOMASS
CVOMASS
AWMASS
BWMASS
AJXMASS
CJXMASS
BJYMASS
CJYMASS .
IF(M .EQ. P .AND. N .EQ. Q) THEN
CWMASS = -1.0 % (
1-BxPx*2%PI1%x*2/A/4.0 )

ELSE

CWMASS = 0.0

ENDIF

(1]}
it

oo
~ o
co -
o

nmouu

MASS(I,J) = AUOMASS
MASS(I,J + MMAX * NMAX) = BUOMASS
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CALL THE IMSL LIBRARY SUBROUTINE. USE THE MASS AND STIFFNESS
MATRICES AS INPUT AND FIND THE EIGENVALUES AND EIGENVECTORS.
CALL DGVCRG(MSIZE, STIFF,MSIZE, MASS, MS1ZE, ALPHA, BETA, EVEC,

40

1IMSIZE)

DO 40 I = 1,MSIZE

IF(BETA(I) .NE. 0.0) THEN
EVAL(I) = ALPHA(I) / BETA(I)
ELSE

EVAL(I) = (1.0D+30 , 0.0D+00)
ENDIF

CONTINUE

IF(NBUCVIB .EQ. 1) THEN

PRINT OUT THE FIRST 10 MODES FOR THE VIBRATION

DO SO I = 1,10

REVAL = DREAL(EVAL(I))
AGEVAL = DIMAG(EVAL(I))

IF(ABS(AGEVAL)
WRITE(Z2,115) I
ELSEIF(REVAL .GT.
WRITE(2,125) I

.GT.

1.0D-15) THEN
1.0D+28) THEN
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MASS(I,J + 2 % MMAX *x NMAX) = CUOMASS

MASS(I,J + 3 *x MMAX x NMAX) = EUOMASS

MASS(I,J + 4 x MMAX % NMAX) = GUOMASS

MASS(I + MMAX *x NMAX,J) = AVOMASS

MASS(I + MMAX * NMAX,J + MMAX x NMAX) = BVOMASS

MASS(I + MMAX * NMAX,J + 2 *x MMAX x NMAX) = CVOMASS
MASS(I + MMAX x NMAX,J + 3 *x MMAX *x NMAX) = EVOMASS
MASS(I + MMAX % NMAX,J + 4 *x MMAX *x NMAX) = GVOMASS
MASS(I + 2 * MMAX * NMAX,J) = AWMASS

MASS(I + 2 x MMAX % NMAX,J + MMAX *x NMAX) = BWMASS
MASS(I + 2 * MMAX * NMAX,J + 2 *x MMAX * NMAX) = CWMASS
MASS(I + 2 x MMAX * NMAX,J + 3 x MMAX *x NMAX) = EWMASS
MASS(I + 2 x MMAX * NMAX,J + 4 *x MMAX * NMAX)} = GWMASS
MASS(I + 3 x MMAX x NMAX,J) = AJXMASS

MASS(I + 3 *x MMAX * NMAX,J + MMAX * NMAX) = BJXMASS
MASS(I + 3 * MMAX * NMAX,J + 2 % MMAX * NMAX) = CJXMASS
MASS(I + 3 % MMAX * NMAX,J + 3 * MMAX * NMAX) = EJXMASS
MASS(I + 3 * MMAX x NMAX,J + 4 x MMAX *x NMAX) = GJXMASS
MASS(I + 4 * MMAX * NMAX,J) = AJYMASS

MASS(I + 4 *x MMAX * NMAX,J + MMAX *x NMAX) = BJYMASS
MASS(I + 4 *x MMAX % NMAX,J + 2 *x MMAX *x NMAX) = CJYMASS
MASS(I + 4 x MMAX x NMAX,J + 3 x MMAX x NMAX) = EJYMASS
MASS(I + 4 x MMAX * NMAX,J + 4 % MMAX % NMAX) = GJYMASS
J=J 4+ 1

CONTINUE

I =1I+1

Jd=1

CONTINUE

PROBLEM




ELSEIF(REVAL .LT. 0.0) THEN

WRITE(2,120) I

ELSE ‘ -
OMEGA = SQRT(REVAL)

WRITE(2,130) I,REVAL,OMEGA

ENDIF
50 CONTINUE
C
ELSE -
C
c PRINT OUT THE CRITICAL BUCKLING LOAD. THE CRITICAL
C BUCKLING LOAD IS THE EIGENVALUE WITH THE SMALLEST ABSOLUTE
C VALUE.
c
DO 55 1 = 2,MSIZE
IF(ABS(DIMAG(EVAL(I-1))) .GT. 1.0D-15) THEN .\
GO TO 55
ENDIF
IF(ABS({DREAL(EVAL(I))) .GT. ABS(DREAL(EVAL(I-1))) .AND. ABS(
1DREAL(EVAL(I-1))) .LT. 1.0D+28) THEN
WRITE(2,220) DREAL(EVAL(I-1))
ENDIF .
55 CONTINUE
C
ENDIF
C
C PRINT OUT THE 1ST MODE OF THE DEFLECTION, W(X,Y), ALONG THE
C MIDLINES OF THE PANEL: X = A/2 AND Y = B/2
C
C PRINT OUT THE W EIGENVECTOR, CMN
C
11 = 1
WRITE(2, 500)
WRITE(2,510) -
MNWMIN = 1 + 2 *x MMAX * NMAX
MNWMAX = 3 x MMAX x NMAX
DO 400 I = MNWMIN, MNWMAX
REVEC(II) = DREAL(EVEC(I, 1))
AGEVEC = DIMAG(EVEC(I, 1))
IF(ABS(AGEVEC) .GT. 1.0D-15) THEN -
WRITE(2,520) I,II,REVEC(II)
ELSE
WRITE(2,530) I,II,REVEC(II)
ENDIF
II1 =11 + 1
400 CONTINUE .
C a
C DETERMINE W(X=A/2,Y)
C
ASTEP = A / 50.0
BSTEP = B / 50.0

XCOORD = A / 2.0




YCOORD = 0.0
WRITE(Z2, 540)
WRITE(2, 542)
801 WMODE = 0.0

JJJ = 1

DO 470 M = 1,MMAX

DO 472 N = 1,NMAX

WMODE = WMODE + REVEC(JJJ)*SIN(M¥PI*XCOORD/A)*SIN(N*PI*xYCOOR
1D/B)

JJJ = JJJ + 1
472 CONTINUE
470 CONTINUE
WRITE(2,550) YCOORD, WMODE
YCOORD = YCOORD + BSTEP
IF(YCOORD .GT. B) THEN
GO TO 800
ELSE
GO TO 801
ENDIF

00 YCOORD = B /7 2.0

QOO0

DETERMINE W(X,Y=B/2)

XCOORD = 0.0

WRITE(Z2, 560)

WRITE(2,570)
810 WMODE = 0.0

JJd =1

DO 480 M = 1, MMAX

DO 482 N = 1, NMAX

WMODE = WMODE + REVEC(JJJ)*SIN(M*PI*XCOORD/A)*SIN(N*PI*xYCOOR
iD/B)

JJJ = JJdJ + 1

482 CONTINUE

480 CONTINUE
WRITE(2, 550) XCOORD, WMODE
XCOORD = XCOORD + ASTEP
IF(XCOORD .GT. A) THEN
GO TO 850
ELSE
GO TO 810
ENDIF

115 FORMAT(/, 9X, I3, 11X, ’EIGENVALUE IS COMPLEX’)

120 FORMAT(/,9X, 13,11X, ’EIGENVALUE 1S NEGATIVE’)

125 FORMAT(/,9X,13,11X, ’EIGENVALUE IS INFINITE’)

130 FORMAT(/, 98X, I3, 10X,D20.13,12X,D20.13)

200 FORMAT(/, 98X, I3, 10X,D20.13)

220 FORMAT(//, 5X, *CRITICAL BUCKLING LOAD = ’,1X,D20.13)
500 FORMAT(//,5X,’W EIGENVECTOR, CMN, FOR 1ST MODE’)
510 FORMAT(//,5X, 'M,N’, 10X, 'CMN’)
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520
530
540
542
550
560
570
850

FORMAT(/, 5X, 14, 2X, 14,12X,D20.13, 3X, * COMPLEX" )
FORMAT(/, 5X, 14, 2X, 14, 12X,D20.13)
FORMAT(//, 5X, DEFLECTION, W(X=A/2,Y)’)
FORMAT(//,5X,’Y (IN.)’,10X,’W(A/2,Y) (IN.)’)
FORMAT(/, 5X,F6.2, 11X,E15.8)
FORMAT(//, 5X, 'DEFLECTION, W(X,Y=B/2)’)
FORMAT(//,5X,’X (IN.)’,10X, W(X,B/2) (IN.)’)
RETURN

END




Appendix E: Generating the Galerkin
Equations

This appendix gives an example for M=N=2 that shows how
Subroutine "GALERK" generates the stiffness and mass/inertia
matrices for simply supported and clamped boundary conditions.
If M=N=2, each degree of freedom is approximated by four terms,
and four equations are generated for each degree of freedom.

The following applies for simply supported boundary
conditions. The procedure for the degree of freedom u_ is

outlined as follows, starting with the four nested sums:

DA

q=1l m
Equation Integration Galerkin Equation
Number q m n Case for U
1 1 1 1 1 1 2.52
1 2 none o
2 1 none 0
2 2 2 2.57
2 2 1 1 none 0
1 2 1 2.52
2 1 2 2.57
2 2 none 0
3 2 1 1 1 none 0
1 2 2 2.57
2 1 1 2.52
2 2 none 0
4 2 1 1 2 2.57
1 2 none 0
2 1 none 0
2 2 1 2.52
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The same operations are carried out for Vor W ¥ and wy using
their associated Galerkin equations for simply supported
boundary conditions. The equations are put intoc matrix format
by forming a new column at each m and n cycle, and forming a new
row at each p and q cycle. The resulting stiffness and
mass/inertia matrices for this example are (20x20). The
eigenvalues and eigenvectors are solved as shown in Eq (3.1)

The eigenvalue problem for the clamped boundary is
formulated in a similar manner. For u, the format is:

AP

Q¥l m

Equation Integration Galerkin Equation

Number P q I n Case For u,

1 1 1

N

.64
.68
.74
.79
.69
.64
.79
.74
.74
.79
.64
.69
.79
.74
.69
.64

w

[y

(=3
N DN = = NN == NN = NN e
N = DN = DN = DN DN =N N =N =
= N W b N = B WW D N W
N ) N NN NN DN DN DN DN NN NN
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Block 19 Abstract

: An analytical study is conducted to determine the fundamental frequencies
and critical buckling loads for laminated anisotropic circular cylindrical
shell panels, including the effects of transverse shear deformation and rotary
inertia, by using the Galerkin Technique. A linearized form of Sander's shell -
strain-displacement relations are derived, which include a parabolic
distribution of transverse shear strains, The theory is valid for laminate
thickness to radius ratios, h/R, of 1/5. Higher order constitutive relationms
are derived for the laminate. A set of five coupled partial differential
equations of motion and boundary conditions are derived and then solved using
the Galerkin Technique. Simply supported and clamped boundary conditions are -
investigated.

The Galetkin method is tested for convergence to exact solutionms.
Comparisons with Donnell shell solutions are conducted. The effects of
transverse shear deformation and rotary inertia are examined by comparing the
results with classical solutions, where applicable. The radius of curvature
is varied to determine the effects of membrane and bending coupling.

iy It is found that the Galerkin Technique converges for all panel
configurations investigated; additionally, it is found that buckling problems
need more terms in the approximation than vibration problems to obtain proper
convergence. The theory compares exactly with the Donnell solutions, which
are valid up to h/R = 1/50. As expected, as length to thickness ratios are
reduced, shear deformation effects significantly lower the natural frequencies
and buckling loads. Analysis also shows that rotary inertia effects are very
small. Finally, as h/R is varied from O (flat plate) to 1/5 (maximum limit),
the frequencies and buckling loads increase due to membrane and bending coupling.
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